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CHAPTER 1. OVERVIEW

Rotorcraft brownout is in-flight visibility restriction caused by clouds of sand and dust

particles during landing, take off, and near ground flight operations in arid desert terrain.

This complex phenomenon is caused by entrainment of dust, sand, and ground particles by

rotor downwash and is compounded by fuselage geometry and its orientation with respect

to the ground. Nonlinear forces and moments on the fuselage, and highly unsteady wind

velocities are common in near ground operations and play a significant role in the behavior of

the particulate clouds that create the brownout condition.

To date, systematic study of brownout is sparse in literature. Some flight test data on

dust distribution for different aircraft are available in Rogers [1] and Chatten [2]. However, in

order to computationally simulate this phenomenon, it is first imperative to correctly predict

the rotor downwash in different flight conditions. Also important is understanding the physics

of particle entrainment and distribution in the brownout dust cloud. Some knowledge can

be obtained from the field of riverine and aeoline sedimentology. It has been found that the

empirical models used in describing the behavior of suspended particles in water or air can be

applied to the helicopter brownout problem also.

Two approaches are popular in studying particle entrainment processes. One is the La-

grangian approach by Keller [3] in which the trajectories of individual particles are tracked and

these particles are taken to represent a dust cloud. The dynamics of each individual particle

is modeled. Thus, for the overall flow to be reliably represented, a large number of particles

must be modeled, thereby making this approach computationally very expensive. In the sec-

ond approach, the so-called Eulerian approach, overall dynamics of the particle distribution in

the air is modeled using suitable transport equations. This approach has been applied to the
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brownout problem by Ryerson [4], and Haehnel [5]. All of the above mentioned research use a

two-phase model to represent the particle dynamics and assume a one-way coupling between

the fluid and the particles, i.e., the fluid affects the particle but not the other way around.

Another documented study of the brownout problem was conducted by Phillips and Brown

[6]. They used the Vorticity Transport Model (VTM) to solve the rotor flowfield and coupled

it with an Eulerian-based dust Transport equation to represent the dust entrainment process.

Brown’s dust transport model uses empirical correlations borrowed from sedimentology and

studies the evolution of particle density distribution and its relation with flowfield velocity and

vorticity. This study found the interaction of the tip vortices with the ground is by far the most

important contributor to the formation of the initial dust cloud. Therefore, the vorticity and

velocity profile in the rotor wake are crucial. Phillips et al [7] determined them to be affected

by parameters like solidity and blade twist. From these studies it can be concluded that the

geometric properties of the rotor have a great influence on the type and extent of the dust

cloud formed. Although VTM is found to be a good model in predicting the rotor downwash,

no fuselage effect is considered in this study. Since it is based on empirical correlations, the

dust transport model has room for further investigation.

Another approach, ([8], [9]) employs a real-time free wake model, coupled with a dust and

debris model, that uses analytical methods in a Lagrangian framework. This model results in

a real-time brownout simulator that gives pilots a feel for the brownout cloud formed under

different flight conditions, ground cover and type of aircraft. A visual obscuration model, based

on a light scattering method, is also used to visualize brownout and train pilots accordingly.

However, the Lagrangian approach makes this approach computationally expensive.

One of the important factors in developing a dust transport model that can be used in

conjuction with a Computational Fluid Dynamics (CFD) code is the development of a suitable

entrainment function to describe the entrainment flux. Haehnel [10] studied the physics of

particle entrainment under the influence of an impinging jet and determined the driving force

for particle entrainment is the Reynolds stress associated with the turbulent fluctuations of

the flow. Since an impinging jet is similar to the wake of the rotor in ground effect, it can
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be deduced that solving correctly for the turbulent fluctuations in the rotor’s flowfield is an

important step in solving the brownout problem. Thus, a complete brownout model that

incorporates all the components of brownout as observed in reality is yet to be developed.

1.1 Current Research

The goal of this current research is to develop a computational test bed to study fuselage

and rotor configuration effects on brownout. The emphasis of the simulation approach has

been on

• global flow field rather than on the flow near the rotor blades.

• body influence on the brownout and on the inception of particle entrainment.

Brownout is a complex phenomenon with multiple scales and physics dictating the physics

of the simulation. The complex phenomenon involves aerodynamic processes like ground effect

on rotor wake, turbulent burst, surface wall jet, tip vortices, and their interactions. These

aerodynamic interactions, coupled with the interaction of the particles, become a complex

multi-phase phenomenon. In addition to the rotor-induced vortical wake, there are unsteady

effects, due to the bluff body underneath the rotor as well as the dynamics of the particles that

complicate the simulation. Hence, to study this behavior accurately as well as economically,

judicious compromises and an engineering approach to the complete physics are required.

Accuracy of the simulation, particularly close to the ground where particle entrainment

takes place, is highly dependent upon the turbulence characteristics and ground shear predicted

by the mathematical models used. Since the phenomenon is inherently three-dimensional, a

three-dimensional flow solver has been developed for studying various turbulence models. Many

variants of turbulence models are considered and implemented in the solver before settling on

the final choice for studying the fuselage configuration effects on rotorwash and brownout. In

addition, a solution procedure for dust cloud evolution and dynamics has been developed.

To accurately and economically predict the turbulent flow field, incompressible Reynolds

Averaged Navier Stokes (RANS)-based solver has been developed in the Cartesian coordinate
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system. In the solver, the governing flow equations are solved using a finite-volume based

method known as SIMPLER ([11]). In this algorithm, the flow field is determined by solving

for primitive variables, namely the static pressure and the velocity vector, directly from the

mass and momentum conservation equations.

To solve for the Reynolds turbulent stresses, additional relations or partial differential

equations (PDE) are solved, known as turbulence models. In general, these turbulence model

can be broadly classified [12] into Zero Equation models, One Equation models and Two

Equation models. These models are also known as linear eddy viscosity models, as they assumes

a linear relationship between turbulent eddy viscosity and the mean strain rate. Other complex

RANS-based models, such as Reynolds Stress models [13], Non-linear Models [14] etc. can also

be found in the literature. Since there has not been much research on the applicability of these

models on rotorcraft brownout flows, it has been decided to use linear eddy viscosity models

for the current research because of their relatively low complexity and low computational cost.

Although these models are most widely used for many industrial flow problems, one of the

drawbacks of these models is that it assumes isotropic character of turbulence, which may be

erroneous for the anisotropic turbulence condition found in brownout.

1.1.1 Turbulence models

Zero Equation models, as the name denotes, do not solve any partial differential equation.

Instead, turbulent viscosity is solved using an algebraic equation. On the other hand, One

Equation and Two Equation models solve one and two partial differential equations, respec-

tively. In general, complexity and accuracy of linear eddy viscosity models increases with the

number of equations solved. A candidate model from each of these categories has been selected,

implemented, and tested.

Zero Equation Model (Baldwin Lomax Model) This model implementation is

straightforward for simple single body flows. It gives acceptable results for simple attached

flow with mild separation and re-attachment. The eddy viscosity is calculated as a function

of turbulent length scale (lt) and turbulent velocity scale (vt), both are semi-empirically mod-
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eled. Length scale is of the order of the boundary layer thickness calculated using vorticity

distribution; thus, eliminating the need to calculate the boundary layer thickness explicitly.

However the model does not perform well where turbulence properties are not proportional

to the mean flow length scale, such as in flows with strong separation and recirculation. The

model is computationally very efficient.

One Equation Model (Spalart Allmaras Model) One equation model overcomes

some of the problems of the Zero Equation Model by solving the transport equation for tur-

bulent viscosity-like variables. Since a transport equation is solved, it captures the effects of

convection and diffusion of turbulence. Thus, the flow downstream is affected by the upstream

turbulence. However, this model still needs to semi-empirically model the length scale to

complete the equations. This is achieved by making the source term (destruction term) as a

function of distance from the nearest wall. This model gives better results for wall-bounded

flows, separated flows, and boundary layer flows with adverse pressure gradients. However,

calculation of an additional equation increases the computational requirement and storage of

additional variables.

Two Equation Model (Standard and Realizable k − ε Model) Solving two equa-

tions avoids the dependence on empirical and semi-empirical algebraic formulations for both

turbulent velocity and length scales. The two coupled partial differential equation are solved

for turbulent kinetic energy, k, and turbulent dissipation, ε. This model is widely used for a

variety of turbulent flows involving separation and re-attachment, and flows with complex tur-

bulent characteristics. However, solving two additional equations requires more computational

time and memory.

1.1.2 Rotor model

To model the rotor, the method developed by Rajagopalan and Fanucci, Rajagopalan and

Lim, and Rajagopalan and Mathur [15, 16, 17] has been used, where the rotor’s influence is

considered as a momentum source which imparts momentum to the fluid flow around it. The



www.manaraa.com

6

momentum source is time averaged and its magnitude depends upon the rotor’s geometry and

flow characteristics around the rotor. The advantage of this model is that there is no need

of a body fitted grid around the rotor; thus, reducing the memory and computational time

requirements. In the time averaged model of the rotor used in this study the effect of discrete

blades are not captured.

1.1.3 Dust transport model

The transport of dust has been modeled by the multiphase species transport equation.

Since the number of dust particles during brownout is immense, dust particle transport is

assumed to be in a continuum phase and is solved in the Eulerian frame of reference. The

advantage of modeling dust in such a manner reduces the computational requirements and

memory. Also, the coupling between particle and flow phase has been considered as a one-way

coupled system, where the particles are affected by the flow and the particles do not have

any effect on the flow. The modeling of dust lift-off criteria, entrainment, and saltation are

accomplished through empirical formulation used in geophysical research. The particle velocity

field is calculated through an Algebraic slip model, which calculates the relative particle velocity

using an algebraic expression.

In summary, all of the aforementioned models have been integrated into a single program,

Rotorcraft Brownout Model (RBM). In the present research, RBM has been used to study the

following problems:

1. Study of various turbulence models on rotorcraft problems in ground effect.

2. Effects of fuselage on rotor wake, ground signature and brownout.

3. Different rotor configurations and ground height effect on rotor wake, ground signature,

and brownout.
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CHAPTER 2. TURBULENT ROTOR FLOW MODELING

2.1 Reynolds Average Navier-Stokes (RANS) Equation

The equation for conservation of mass and momentum of incompressible rotor flow field is

given by

∂ui
∂xi

= 0 (2.1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂tij
∂xj

+ Sirotor (2.2)

where ρ is density, xi is position, ui is velocity, p is pressure, and t is time. The term tij is

viscous stress tensor given by

tij = 2µSij (2.3)

where µ is molecular viscosity and sij is the strain rate tensor given by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.4)

Sirotor is the rotor momentum source term used to model the rotor (discussed in section 2.3).

The above set of equations form the incompressible Navier-Stokes equation and can be

used to solve for laminar as well as turbulent flows. However, most of the practical turbulent

flows contain cascades of eddies with a wide range of time and length scales. Direct Numerical

Simulation (DNS) is a numerical method, which resolves all the length and time scales of

turbulent motion using very fine grids. Large Eddy Simulation (LES) is another numerical

technique, in which the larger eddies are resolved; whereas, the smaller turbulent structures

are modeled. Nevertheless, in case of complex flows, such as rotor flows, both of the above

methods need an impractical degree of grid refinement and simulation time for design use.



www.manaraa.com

8

An alternate approach is to solve for the time averaged mean flow as introduced by

Reynolds. In this concept, the instantaneous velocity, ui, in an inhomogeneous turbulence

can be expressed in terms of mean velocity, Ui, and fluctuating velocity, u′i.

ui = Ui + u′i (2.5)

The mean velocity Ui is the time averaged velocity defined as

Ui = lim
T→∞

[
1

2T

∫ T

−T
ui dt

]
(2.6)

where T is a time interval large enough compared to the turbulent length scale, but smaller

than the time in which the time-averaged mean flow varies. Also, the time average of the

fluctuating velocity is zero.

lim
T→∞

[
1

2T

∫ T

−T
u′i dt

]
= 0 (2.7)

Replacing the instantaneous velocity, ui, in the Navier-Stokes equation with the sum of

time averaged velocity, Ui, and fluctuating velocity, u′i, and then taking the time average of

the equation yields Reynolds Average Navier-Stokes (RANS) equations.

∂Ui
∂xi

= 0 (2.8)

∂ρUi
∂t

+
∂ρUiUj
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
2µSij − ρu′iu′j

)
+ Sirotor (2.9)

where −ρu′iu′j is the time average of product of fluctuating velocities and are called Reynolds

Stresses, denoted by τij .

τij = −ρu′iu′j (2.10)

wherein τij is a symmetric tensor, i.e., τij = τji.

The RANS equations are not closed form equations. The Reynolds stresses, τij , are six

additional unknowns, that need to be calculated to complete the RANS equations. Additional

relationships or equations are required to relate or calculate τij in terms of known or calculated
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variables. These additional relations or equations are the main essence of turbulence modeling.

2.2 Eddy Viscosity-based Turbulence Model

According to Boussinesq’s hypothesis, the turbulent Reynolds stress is related linearly to

the mean strain-rate tensor of the fluid flow. Analogous to viscous stress, the proportion-

ality factor is called turbulent viscosity or eddy viscosity, µt,. Boussinesq’s hypothesis for

incompressible flow is

τij = 2µt Sij −
2

3
ρkδij (2.11)

where the term 2
3ρkδij is a linear constitutive relation used while solving two-equation models

or models which solve for turbulent kinetic energy, k. Turbulent kinetic energy is defined as

k =
1

2

(
u
′2
1 + u

′2
2 + u

′2
3

)
(2.12)

Using Boussinesq’s hypothesis, the RANS (Eq. 2.9) equation becomes

∂ρUi
∂t

+
∂ρUiUj
∂xj

= − ∂p

∂xi
+

∂

∂xj

[
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
− 2

3

∂k

∂xi
+ Sirotor (2.13)

Thus, using the above assumption, the problem of finding Reynolds stress reduces to deter-

mination of eddy viscosity. Unlike molecular viscosity, µ, eddy viscosity, µt, depends on local

flow characteristics, mainly the local turbulent length scale and velocity scale. The eddy vis-

cosity is calculated using various eddy viscosity-based turbulence models which can be broadly

categorized, depending upon the number of transport equations being solved.

• Zero Equation Models (Cebeci-Smith Model, Baldwin-Lomax Model)

• One Equation Models (Baldwin-Barth Model, Spalart-Allmaras Model)

• Two Equation Models (k − ε Model, k − ω Model)

In the current research, one representative model from each category, i.e., Baldwin-Lomax

Model, Spalart-Allmaras Model, and k − ε has been implemented and tested.
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2.2.1 Baldwin-Lomax Model

The Baldwin-Lomax model [12, 18] is a two-layer algebraic zero-equation eddy viscosity

model, which gives the eddy viscosity, µt, as a function of the local boundary layer velocity

profile. The earlier zero-equation models require determination of the outer edge of boundary

layer to calculate the length scale for boundary layer and wakes. This problem is eliminated

in this model as it uses the vorticity distribution to compute the required length scales. One

of the major disadvantages of this model is it is unable to capture the time history effect of

turbulence, such as convection and diffusion, because no transport equation is being solved.

This model is quite robust and useful for simpler flow geometries.

Equations: The turbulent viscosity is given as

µt =


µtinner if y ≤ ym

µtouter if y > ym

(2.14)

where ym is the smallest distance from the surface, where µtinner is equal to µtouter. The inner

region is given by the Prandtl - Van Driest formula:

µtinner = ρl2mix |ω| (2.15)

where mixing length lmix is given by

lmix = ky

(
1− e

−y+

A+

)
(2.16)

where y+ is non-dimensional height calculated as y+ =
√
τw/ρ y/ν. A+ is a constant.

|ω| is magnitude of vorticity given by

|ω| =
√

2ωijωij (2.17)

where

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.18)
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The outer region is given by:

µtouter = ρK Ccp Fwake FKleb(y) (2.19)

where K and Ccp are constants. Fwake is given as

Fwake = MIN

(
ymax Fmax ; Cwk ymax

u2
dif

Famx

)
(2.20)

where Cwk is a constant.

Fmax =
1

κ
[maxy(lmix |ω|)] (2.21)

where ymax is y at which lmix |ω| is a maximum.

FKleb is the intermittency factor given by:

FKleb(y) =

[
1 + 5.5

(
y CKleb
ymax

)6
]−1

(2.22)

where CKleb is a constant.

udif is the difference between maximum and minimum speed in the profile. For boundary

layers, the minimum is always set to zero.

udif = max(
√
uiui)−min(

√
uiui) (2.23)

The values of closure coefficient used in this model is given in Table 2.1.

Table 2.1 Closure coefficient for Baldwin-Lomax Model

A+ 26

Ccp 1.6

CKleb 0.3

Cwk 0.25

κ 0.4

K 0.0168
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2.2.2 Spalart-Allmaras Model

Spalart-Allmaras Model [19] is a one-equation eddy viscosity model which solves a transport

equation for a viscosity-like variable, ν̃, used to calculate kinematic turbulent viscosity, νt.

Equations: Kinematic turbulent eddy viscosity, νt, is related to ν̃ as:

νt = ν̃fv1 (2.24)

where

fv1 =
χ3

χ3 + C3
v1

, χ =
ν̃

ν
(2.25)

The intermediate variable ν̃ is calculated using the transport equation:

∂ρν̃

∂t
+
∂ρuj ν̃

∂xj
= Sdiffusion + Sproduction − Sdestruction + Strip (2.26)

where Sdiffusion is a diffusion term, Sproduction is the source term due to turbulence production,

Sdestruction is the sink term due to turbulence destruction, and Strip is a trip term used for

turbulence transition.

The diffusion term is defined as

Sdiffusion =
ρ

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(2.27)

The production source term depends upon vorticity and allows good modeling near the

wall.

Sproduction = ρCb1[1− ft2]S̃ν̃ (2.28)

where Cb1 is a constant. S̃ is given by

S̃ = S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
(2.29)
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d is distance from nearest wall and S is magnitude of vorticity given by

S =
√

2ΩijΩij , Ωij =
1

2
(
∂ui
∂xj
− ∂uj
∂xi

) (2.30)

ft2 is given by

ft2 = Ct3 exp(−Ct4χ2) (2.31)

where Ct3 and Ct4 are constants.

The destruction term depends upon the nearest wall distance, d.

Sdestruction = ρ

[
Cw1fw(r)− Cb1

κ2
ft2

](
ν̃

d

)2

(2.32)

The term fw(r) calibrates the outer region of boundary layer and depends upon the charac-

teristic length r, and is given by:

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r6 − r), r =
ν̃

S̃κ2d2
(2.33)

where Cw2 and Cw3 are constants.

The trip term is modeled as

Strip = ρft1∆U2 (2.34)

where ∆U2 is a norm between the velocity at transition and field point considered. ft1 is given

by

ft1 = Ct1gt exp

(
−Ct2

ω2
t

∆U2
[d2 + g2

t d
2
t ]

)
(2.35)

In the current research, the tripping terms ft1 and ft2 have been neglected (set to zero).

The values of closure coefficient is given in Table 2.2

2.2.3 k − ε Models

k − ε model is a two-equation turbulence model which solves two transport equations for

turbulent kinetic energy, k, and turbulent dissipation, ε. Unlike zero-equation and one-equation
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Table 2.2 Closure coefficient for Spalart-Allmaras Model

σ 2/3

Cb1 0.1355

Cb2 0.622

κ 0.41

Cw1 Cb1/κ + ( 1 + Cb2)/κ

Cw2 0.3

Cw3 2.0

Cv1 7.1

Ct1 1.0

Ct2 2.0

Ct3 1.1

Ct4 2.0

models, the two-equation model is also called a “complete” turbulence model since it solves for

both turbulence length scale and velocity scale, instead of relating it to some flow properties.

The turbulence length scale is taken as k3/2/ε and velocity scale is approximated as k1/2. Using

these, the turbulent viscosity can be calculated as

µt = Cµρ
k2

ε
(2.36)

where Cµ is a model constant in Standard k − ε model with value of 0.09.

Many variant of k−ε model are discussed in the literature. These formulations mainly differ

in the method of calculating turbulent velocity, calculation of source term (both generation

and destruction term) of ε-equation and model constants. In this research two variants of the

k − ε model have been used. The first is the original and the most popular model, developed

by Launder and Spalding [20] well known as the Standard k − ε model. The other model is

relatively new, proposed by Shih [21], known as Realizable k − ε model.

2.2.3.1 Standard k − ε model

The Standard k − ε model is a semi-empirical model in which the equation for turbulent

kinetic energy, k, is derived from the exact equation; whereas, the transport equation for ε is

more of a mathematical expression obtained from physical reasoning. This model is only valid
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for fully turbulent flows.

Equations: Transport equation for turbulent kinetic energy is given by

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ Pk − ρε (2.37)

where Pk is the production term for turbulent kinetic energy and ρε is the destruction term

due to turbulent dissipation.

The transport equation for turbulent dissipation is given by

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Pk − C2ερ

ε2

k
(2.38)

where C1ε
ε
kPk is the production and C2ερ

ε2

k is the destruction of turbulent dissipation.

The production term Pk is modeled as

Pk = −ρu′iu′j
∂uj
∂xi

= τij
∂ui
∂xj

(2.39)

Using Boussinesq’s hypothesis, Pk can be related to mean rate of strain tensor S =
√

2SijSij

as

Pk = µtS
2 (2.40)

Calculating turbulent production term using Eq.2.40 may cause overproduction in turbulent

kinetic energy in highly accelerated or decelerated regions and the stagnation regions. To over-

come this problem, Kato and Launder [22] proposed an ad-hoc modification to the production

term of turbulent kinetic energy equation. Kato and Launder proposed to replace one of the

strain rate, S, with vorticity, Ω, to modify the production term as

Pk = µtSΩ (2.41)

where Vorticity Ω is given as

Ω =

√
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)2

(2.42)
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The values of coefficient used are listed in Table 2.3.

Table 2.3 Closure coefficient for Standard k − ε Model

C1ε 1.44

C2ε 1.92

Cµ 0.09

σk 1.0

σε 1.3

2.2.3.2 Realizable k − ε model

The Standard k−ε model may sometimes violate two mathematical constraints on Reynolds

Stresses based on the physics of turbulent flows. Using Boussinesq hypothesis, normal Reynolds

stress for an incompressible flow can be written as

ρu′2 = −2µt
∂U

∂x
+

2

3
k (2.43)

The normal Reynolds Stress ρu′2, a positive quantity, may become negative or non-realizable

if the strain is high as

k

ε

∂U

∂x
=

1

3Cµ
≈ 3.7 (2.44)

Another defect of the Standard k− ε model (Shih (1995) [21]) is it may violate the Schwarz

inequality for shear stresses u′αu
′
β

2 ≤ u′2αu′2β at a high strain rate.

To overcome these deficiencies in the Standard k − ε model, two modifications have been

adopted in the Realizable k − ε model as follows:

1. A new transport equation for turbulent dissipation (new production and destruction

term) based on the dynamic equation of the mean-square vorticity fluctuation.

2. A new eddy viscosity formulation in which Cµ is a variable.

Equations: The transport equation for turbulent kinetic energy is given by

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ Pk − ρε (2.45)
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The equation for turbulent dissipation is given by

∂

∂t
(ρε) +

∂

∂xj
(ρεuj) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√
νε

(2.46)

where ρC1Sε is the new production term and ρC1Sε− ρC2
ε2

k+
√
νε

is the new destruction term

for turbulent dissipation. The term C1 is given as

C1 = max

[
0.43,

η

η + 5.0

]
, η = S

k

ε
, S =

√
2SijSij (2.47)

The transport equation for turbulent kinetic energy is the same as the Standard k−ε model.

The only difference is in the calculation of the source term of dissipation equation. One of the

remarkable features noted in the ε equation is it does not contain the Pk in production source

term. It is believed this helps to better represent the spectral energy transfer [23]. Also, the

singularity problem of destruction term in the ε equation of the Standard k − ε model (when

k = 0) does not exist because of the modified destruction term.

The turbulent viscosity is modeled the same as Eq. 2.36 but with the variable, Cµ. Cµ is

given by

Cµ =
1

A0 +As
kU∗

ε

(2.48)

U∗ ≡
√
SijSij + Ω̃ijΩ̃ij , Ω̃ij = Ωij − 2εijkωk, Ωij = Ωij − εijkωk (2.49)

Ωij is the mean rate-of-rotation tensor viewed in a rotating reference frame with the angular

velocity ωk.

The constants A0 and As are given by:

A0 = 4.04, As =
√

6 cosφ (2.50)

where

φ =
1

3
cos−1(

√
6W ), W =

SijSjkSki

S̃3
, S̃ =

√
SijSij , Sij =

1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
(2.51)
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The values of the coefficient used in the Realizable k − ε Model are given in Table 2.4.

Table 2.4 Closure coefficient for Realizable k − ε Model

C1ε 1.44

C2ε 1.9

σk 1.0

σε 1.2

2.3 Rotor Source Modeling

In the present research, the method developed by Rajagopalan and Fanucci, Rajagopalan

and Lim, and Rajagopalan and Mathur [15, 16, 17], where the rotor has been treated as a

momentum source is adopted. The rotor is modeled as the momentum source term, Sirotor, and

is added to the momentum equation at the point where the blades pass. The magnitude of the

source term is a function of rotor geometry, blade cross-sectional aerodynamic characteristics,

and the local flow field.

Sirotor = Sirotor(Cl, Cd, α, α̇, ~V ,Ω, x, y, z, ρ, µ,Re,M, b, c) (2.52)

The source term is time averaged and individual blades are not recognized. Explicit details of

the chordwise flow over rotor blade are not resolved.

To calculate rotor source term, the rotor is discretized into a spanwise element. The blade

properties, like chord length, airfoil thickness, plane deflection, and cross-sectional area are

assumed to be constant over the element. The source term is added to the grid cells, where the

blade pass while the rotor spins. A brief description of rotor source calculation is shown here.

More details can be found in Rajagopalan and Lim [16] and Rajagopalan and Mathur,[17].

2.3.1 Rotor source calculation

The rotor source term is calculated by computing the rotor force using the local angle of

attack and Mach number at each spanwise element. This is achieved by finding the Cl and

CD values from a lookup table for the given airfoil at that particular angle of attack and Mach
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number. If ~V = Vxêx + Vy êy + Vz êz is the velocity vector at position (x, y, z), where the

Figure 2.1 Aerodynamic forces on blade section

rotor passes, then it can be transferred to the blade coordinate system (n, θ, s), such that the

velocity vector in rotor plane becomes

~V ′ = vnên + vθêθ + Vsês (2.53)

If the rotor blade is flapping about the flapping hinge, then the tangential velocity of the

center of the blade element, with respect to the flapping hinge, is given by

~Vflap = (β̇Rf )ên (2.54)

where Rf is the radial distance from the hinge offset and β̇ is the flapping rate. In general, the

flapping motion of the blade is given by the flapping angle, β, represented as a Fourier series

of azimuthal angle ψ as

β = a0 + ΣN
n=1(an cosnψ + bn sinnψ) (2.55)

From the above equation the flapping rate can be calculated as

β̇ =
∂β

∂ψ
ω (2.56)

where ω is the angular velocity of rotor. Using the Eq. 2.53 and 2.54 the flow velocity relative
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to the blade is given as

~Vrel = ~V − (~Vbl + ~Vflap)

= v′nên + v′θêθ + V ′s ês (2.57)

where ~Vbl is the velocity of the blade in (n, θ, s) coordinate.

The local angle of attack, α, at any spanwise position, s, is given by

α = φ− ε (2.58)

where ε is inflow angle given by

ε = arctan(−v′n/v′θ) (2.59)

The twist angle, φ, at that section can be determined from the rotor blade geometry twist

and from cyclic pitch variation of the blade root section θr as

θr = A0 + ΣN
n=1(An cosnψ +Bn sinnψ) (2.60)

The local Mach number is calculated from

M ′ = v′/a (2.61)

where a is the speed of sound and v′ is the relative velocity seen by the airfoil section which

is v′ =
√
v′2n + v′2θ. After calculating the local Mach number and local angle of attack, the

aerodynamic coefficients, Cl and Cd, are obtained from the airfoil lookup table. Determining

the aerodynamic coefficients in this manner implicitly allows the compressibility effect on the

aerodynamic characteristics of the blade section.



www.manaraa.com

21

Hence, the lift and drag in the directions, ên and êθ, can be calculated as

fn = L cos ε−D sin ε

fθ = L sin ε+D sin ε (2.62)

where L and D are given by

L =
1

2
ρv′

2
Clc ds

D =
1

2
ρv′

2
Cdc ds (2.63)

The resultant force can be transformed to the computational domain to obtain the resultant

force acting on the blade ~F . The force acting on the fluid is −~F which is added to the

momentum source term. However, in the steady (time-averaged) rotor source model, this force

is distributed to the computational cells passed by the rotor blade. The fraction of the force

added to the cells is calculated as follows.

If trev is the time period of rotation of rotor, i.e., trev = 2π/ω, then the time the blade

element spends in a control volume with width ∆θ is given by

t∆θ =
∆θ

ω
(2.64)

Then, the fraction of the time blade element spends in a cell is

tfrac =
∆θ

2π
(2.65)

If there are Nb blades, then the time averaged source term is given by

~S =
Nb∆θ

2π
(−F ) (2.66)
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CHAPTER 3. DUST TRANSPORT MODELING

Dust particle entrainment during rotorcraft brownout is a process of soil particle movement

by the aerodynamic force of impinging rotor downwash with distinct phases of particle lift-off,

transport, and deposition. There are many factors which affect the physics of the process,

which includes strength of rotor downwash, ground signature, aerodynamic roughness length,

land-surface topography, soil texture, soil composition, etc. Although the phenomenon of

particle entrainment and transport takes place in most of the surface types, the intensity and

magnitude of entrainment is intense in desert arid region, where the percentage of dust in the

soil is high and surface vegetation does not restrict the motion of particles.

One of the closely related physical phenomenon to rotorcraft brownout can be found in

the geophysical process of aeolian sedimentology and particle transport. There have been a

number of studies completed in the geophysical research group, which deals with the behavior

of particle motion and transport by air as well as water. Although the basic physics of particle

motion, both in geophysical process and rotorcraft brownout, remains the same, the condition

in which this process takes place is different. In the geophysical level, flow is mainly parallel

to the ground; whereas, in the brownout scenario, the flow impinges on the ground with

many other complex aerodynamic processes. Development of mathematical formulations of

wind erosion problem under rotor flow is scarce in literature. The present research uses a

mathematical formulation based on empirical and semi-empirical relations from the geophysical

research group. Most of the mathematical relations discussed in this chapter are related to

wind erosion, Shao (2000) [24]. To model the transport of particles in the rotor flow field,

the particle motion is modeled as a multi-phase flow. The governing equation for particle

transport has been taken from the multi-phase research group, which formulates air as the
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carrier medium and particle as the discrete medium ([25]).

3.1 Particle Characteristics

The particle transport process involves various complex interactions, like particle-flow in-

teraction, particle-particle interaction, and particle-surface interaction. The behavior of these

interactions are influenced by various physical properties of particles, like shape, size, density,

terminal velocity, threshold velocity, etc.

3.1.1 Equivalent particle diameter

The particle size is one of the major factors determining particle transport behavior and

characterization. In general, particle size is closely related to particle shape. The shape

of a particle can be very irregular and varies from sphere to plates, very angular to well-

rounded, and from rough to smooth in their texture. These properties can be defined by

various morphological parameters, like sphericity, roundness, and surface roughness. However,

it can be extremely difficult to precisely determine the size of the particle unless the shape is

well defined. A simple and efficient way to characterize the particle is through equivalent

particle size or diameter. Equivalent particle size of a particle is the diameter of the

equivalent sphere which retains certain aerodynamic or optical properties as identical to the

particle. Equivalent particle diameter can be based on mass, volume terminal velocity, drag,

etc. For example, mass equivalent and volume equivalent diameter are:

dm =

(
6m

πρp

)1/3

dv =

(
6V

π

)1/3

(3.1)

where m is particle mass, V is the particle volume, and ρp is the particle density. The choice

of the type of particle equivalent diameter depends upon the problem studied. For the current

research, equivalent diameter, based on drag and terminal velocity, is the most appropriate.

Based on the size, a particle can be characterized among roughly four categories as shown

in Figure 3.1, i.e., gravel (2000µm < d ≤ 2m), sand (60 < d ≤ 2000µm), slit (2 < d ≤ 60µm),
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and clay (d ≤ 2µm) (based on MIT and British Standards Institute). For simplicity, in the

current work the particles have been divided in two categories - sand and dust. Sand particles

(d > 100µm) are those particles, which are relatively heavier and cannot be suspended in the

air for long time. They are deposited back in the ground, due to the gravitational effect, but

they play a major role in dust entrainment by the process known as saltation. Dust particles

(d < 100µ) are those, which are relatively smaller and play a major role in forming dust

clouds. Because of lower terminal velocity of dust particles, they are carried by the flow for

longer distance and time, particularly by the effect of turbulent eddies.

Figure 3.1 Particle size characterization

Generally soil contains distribution of particle sizes which is represented by particle size

distribution density function p(d), Figure 3.2. If P (d) is probability (or mass fraction) of

particle with diameter less than d, then

P (d) =

∫ d

0
p(d)δd (3.2)

Given the particle size distribution function of a given soil, the mass fraction of any range of

size can be calculated. For example, mass fraction of a particle size between da and db is given
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Figure 3.2 Particle size distribution in different regions

by

P (db)− P (da) =

∫ db

da

p(d)δd (3.3)

3.1.2 Forces on particle

Various forces acting on a particle include

• Gravitational Force Fg

• Aerodynamics Drag Fd

• Aerodynamics Lift Fl

• Buoyancy Force Fb

• Magnus Force Fm

• Electrostatic Force Fe
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• Particle-Particle Interaction Fp

Gravitational force is due to gravity, which is simply the weight of the particle acting vertically.

Fg = −mg (3.4)

where g is the acceleration due to gravity.

Aerodynamic drag is produced when a particle moves relative to the surrounding fluid,

creating a pressure difference ∆p between frontal and wake regions, Figure 3.3. Additional

force is also exerted by shear σij of the fluid on the surface.

Figure 3.3 Aerodynamic drag and lift on spherical particle

Fdi = −
∫
S
pnidS +

∫
S
σijnjdS (3.5)

The above equation for aerodynamic drag can be quantified by using drag coefficient CD

by

Fd =
1

2
ρCDA |ur|Ur (3.6)

where ur = u − up is the relative velocity of particle, A is the representative area, and up is

particle velocity.
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Aerodynamic drag coefficient CD is the function of the particle Reynolds number, Rep =

ρurd/µ, Figure 3.4. There has been numerous studies completed on the relationship between

CD and Rep. In general, if Rep << 1, then it is assumed to be Stokes flow. For this region,

CD varies inversely with Rep. With increasing Rep, CD reaches a constant value around 0.45.

Known as the inertial region, this region is between 750 < Rep < 3.5× 105. At a much higher

Reynolds number, Rep > 3 × 105, there is a sudden decrease in the CD value to around 0.1,

due to turbulence.

Figure 3.4 Aerodynamic drag coefficient, CD, as a function of Reynolds

number Rep

At Stokes flow region, the flow is a creeping flow, where the inertial effect can be neglected.

The governing equation in this region can be given by

∂p

∂xi
= µ

∂2ui
∂xi∂xj

(3.7)

By solving the above equation for flow over a spherical particle, force due to pressure can be

found as

Fp = πµdpU (3.8)
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where U is free stream velocity. Similarly, the shear force can be calculated as

Fτ = 2πµdpU (3.9)

Thus, total drag force in Stokes region can be given as

Fd = 3πµdpU (3.10)

and in terms of relative velocity,

Fd = 3πµdpur (3.11)

Using the Fd, the drag coefficient for Stokes flow can be found as

CD =
24

Rep
(3.12)

With an increase in Reynolds number, the inertial forces become more significant and

the drag coefficient is higher than Stokes drag. In the current work, a simpler expression of

CD(Rep) is used

CD =
24

Rep
fdrag (3.13)

where fdrag is known as the drag function and can calculated as [25]

fdrag =


1 + 0.15Re0.687

p if Rep ≤ 1000

0.0183Re if Rep > 1000

(3.14)

Similar to aerodynamic drag, aerodynamic lift is produced due to a difference in pressure

above and below the particle, due to difference in velocity (Bernoulli’s effect) as shown in

Figure 3.3. Aerodynamic lift can also be approximately calculated [24] through

Fl =
1

2
ClρA(∇U2)d (3.15)



www.manaraa.com

29

where ∇U2 is a gradient of U and Cl is the aerodynamic lift coefficient roughly proportional

to CD, as Cl = 0.85CD.

The buoyancy force, Fb, on the particle is proportional to the density ratio of the particle

to fluid. In the present case, the density of particle is of the order of 103; whereas, the density

of fluid is of the order of 1. Since the density ratio is of the order of 103, Fb has been neglected.

Magnus force, Fm, is force caused by rotation of the particle and acts perpendicular to both

the direction of motion and rotation. Electrostatic force, Fe, is cased by electrostatic charge

on particle and electric field near the surface. In the present work, Fl, Fm and Fe have been

neglected.

Particle-particle Fp interaction can occur for two reasons. The first is due to particle-

particle collision, which happens when the particle density is high. This also is neglected in

the current research. The other interaction is caused by a cohesive force, due to inter-molecular

attraction. This force is dominant when particle size is small.

3.1.3 Particle terminal velocity

Particle terminal velocity is the particle to fluid relative velocity, when the aerodynamic

forces balance the gravitational force on the particle [24]. At this instance, the particle expe-

riences zero acceleration dupi/dt = 0. Neglecting all external forces, except the aerodynamic

drag force, Fd, and gravitation force, Fg, the simplified equation for particle motion can be

written as

m
dupi
dt

= 3πµdpfdraguri + δi3mg (3.16)

Using the expression for fdrag from Eq. (3.13), the equation of particle motion can be written

as

dupi
dt

=
fdrag
τv

uir + δi3g (3.17)

where τv is the particle velocity response time,

τv =
ρpd

2
p

18µ
(3.18)
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Applying dupi/dt = 0 in Eq. (3.17), horizontal components of terminal velocity are found

to be zero. The vertical component, wt, is

wt =
gτv
fdrag

(3.19)

Using Eq. (3.13) and Eq. (3.18), the vertical terminal velocity can be written as

wt =
4gdpσp

3CD(Rept)wt
(3.20)

where σp = ρp/ρ is the particle density ratio. Rept = wtdp/ν is particle Reynolds number

at terminal velocity. In general, the above equation is an implicit equation in wt, since CD

is the function of Rept, which, in turn, is a function of wt. This equation is solved using

numerical iteration. In the special case for flow around Stokes region, CD = 24/Rep and,

thus, wt = σpgd
2
p/18ν. At a very high Reynolds number, CD = 0.48 and wt = 1.66(σpgdp)

(1/2).

Plot showing the variation of terminal velocity with particle diameter at three different density

ratios are shown in Figure 3.5.

Figure 3.5 Particle terminal velocity, wt, Shao (2000) [24]
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3.1.4 Particle threshold friction velocity

Particle threshold friction velocity, u∗t, is the minimum friction velocity, u∗ =
√
τw/ρ,

required to give the initial motion to the particle on the ground against the retarding grav-

itational force and cohesive forces. The forces which drive the initial motion are mainly

Figure 3.6 Particle threshold friction velocity u∗t Iversen et al. (1976) [26]

the aerodynamic drag Fd and lift Fl, which are directly proportional to wall shear near the

ground. Particle threshold velocity depends upon capacity of the surface to resist wind erosion,

essentially a function of surface properties. In general, threshold velocity depends on various

factors like

• Particle diameter (dp)

• Particle size distribution (p(d))

• Particle density (ρp)

• Fluid density (ρ)

• Impact of impinging particle (air,water)

• Particle friction Reynolds number (Re∗)
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There have been many theories developed to calculate the threshold friction velocity. One of

the earliest theories, known as Bagnold Scheme [27] or Bagnold Formulae, was proposed

by Ralph Alger Bagnold (founder and first commander of the British Army’s Long Range

Desert Group during World War II).

u∗t = AB
√
σpgdp (3.21)

where the coefficient AB = AB(Re∗t) depends on particle threshold Reynolds number (Re∗t =

u∗idp/ν). It was found empirically to be in the range of 0.1 and 0.2. A problem with this

scheme was it predicts a lower threshold friction velocity for particles below the viscous sub

layer. Later Greeley and Iversen [28] hypothesized that AB is not constant but is a function

of aerodynamic drag and the inter particle cohesive force.

AB = A1F (Re∗t)G(d) (3.22)

where G(d) is the function which takes cohesive force into account. The threshold friction

velocity for different particle types are plotted in Figure 3.6.

Very recently Lu and Shao [29] proposed that under ideal conditions, u∗t can be described

as a function of particle property alone

u∗t =
1

κ

√
a1

(
ρp
ρ
gdp +

a2

ρdp

)
(3.23)

where κ represents a surface roughness factor taken to be 1.0 in this current research. From

experiments the value of the coefficient a1 and a2 are found to be approximately 0.0123 and

3 × 10−4kgs−2, respectively. In the current research the above semi-empirical expression for

u∗t has been used.
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3.2 Modes of Particle Transport

Based on different categories of particle and flow condition, the particle adopts a different

type of transport mechanism [24] (Figure 3.2).

Figure 3.7 Modes of particle transport

• Suspension

This type of particle transport is common among relatively smaller particles, referred

to as dust particles here. Once the particle has lift-off from the ground, it stays in the

air for a longer time and travels longer distance. Due to its low terminal velocity, it

is easily influenced by turbulent fluctuating velocities. Thus, for this type of particle,

turbulent diffusion plays a very important role in the transport mechanism. For most

geophysical processes, particles below . 70µm are considered to have a suspension type of

motion. Also, if the terminal velocity of the particle is very small compared to the vertical

turbulent velocity, then the particle follows the suspension mode. If the vertical terminal

velocity is approximated as κu∗, then the particle goes to suspension, if wt/κu∗ << 1.

• Saltation

When fluid friction velocity is higher than the threshold friction velocity, the relatively

larger sand particle is entrained into the flow. Since the terminal velocity is large for

these particles, they fall to the ground, due to gravitational force. While in flight these

particles extract momentum from the flow and hit the ground with higher energy. This
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impact further intensifies the emission of more particles and dust into the flow. Thus,

this mechanism plays a very important role in dust particle entrainment.

The layer in which saltating particles moves is called saltation layer. The thickness of

this layer, know as saltation layer thickness (zm), is the maximum height the saltating

particle attains. The height of the saltation layer depends upon the friction velocity. As

predicted by Owen [30], saltation layer thickness can be given by

zm = c
u2
∗

2g
(3.24)

where c is a constant assumed to be 1.6. Owen also hypothesized the saltation layer

behaves as a rough surface with roughness length, zos, proportioal to the saltation layer

thickness, zm, for the flow above the saltation layer.

• Creep

Larger particles > 1, 000µm are too heavy to be lifted by aerodynamic force. These

particles roll (or creep) along the ground. One of the major causes of surface creep is the

momentum imparted to the heavy particles from the impact of saltating particles.

3.2.1 Dust emission mechanism and modeling

So far in this chapter, various characteristics and properties of all sizes of particle have been

described. Since much anecdotal evidence suggests that in the case of brownout, relatively

small, fine, powder-like particles are the main ingredient of the brownout cloud [6], focus of

this research will be on dust particles. In general, there are three mechanism of dust emission

as depicted in Figure 3.8.

1. Aerodynamic Lift This occurs when aerodynamic lift is large enough to pick the dust

particles from the ground. Generally, these particles are very small, where the grav-

itational and aerodynamic lift are much smaller; whereas, the cohesive force can be

dominant. Dust emission, due to this mechanism, is small.



www.manaraa.com

35

2. Saltation Bombardment As discussed before, when the saltating particle falls on the

ground, due to high momentum content, it transfers energy to the dust particles, which

helps overcome the binding forces. The dust emission, due to this mechanism, is an order

in magnitude higher than aerodynamic lift.

3. Disaggregation This happens when sand particles coated with dust disintegrate under

strong wind erosion.

Figure 3.8 Dust emission mechanism from Shao (2000) [24]

3.2.2 Vertical particle flux

Experiments conducted by Nalpanis [31] showed vertical particle flux, F , decreases expo-

nentially with height.

F = Foe
−λgz
u2∗ (3.25)

where Fo is vertical particle flux at ground, z is the height from ground, and λ is a parameter

which around 50%. Through various field measurement with different kinds of soils accom-
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plished by Gillette [32], it was found that Fo is proportional to un∗ , where n varies between

2.9 and 4.4 depending on soil type. Based on this relation, there has been a number of dust

emission schemes proposed by various researchers. Although a generalized scheme has not been

developed due to the large numbers of parameters involved, it has been found that dust emis-

sion is directly linked with intensity of saltation and indirectly related to the binding strength

of dust particles. For the current research, a scheme proposed by Marticorena and Bergametti

[33] has been used. The vertical particle flux depends upon saltation or horizontal particle flux

Q as

Fo = Qe13.4f−6.0 (3.26)

where f is percentage of clay in soil. For this research f = 0.1 was used.

Similar to vertical particle flux, saltation flux also depends on friction velocity u∗. The

present research uses a model developed by Bagnold [27] to calculate the saltation flux Q.

Q =


0 if u∗ < u∗t

coρ
g u

3
∗

(
1− u2∗t

u2∗

)
if u∗ ≥ u∗t

(3.27)

where co = 0.25 + 0.33wt
u∗

.

As discussed earlier, particle entrainment happens when ground friction velocity, u∗, is

greater than threshold friction velocity, u∗t. The friction velocity is calculated from ground

stress as u∗ =
√

(τw/ρ). In most geophysical research, like uniform steady parallel flow,

the ground stress is calculated from the gradient of mean flow velocity (the first moment of

velocity field). But, in the experiment conducted by Haehnel [10] on particle entrainment under

impinging jet, it was found that there was significant particle entrainment in the jet centerline

stagnation zone, where the wall stress based on gradient of mean flow velocity is zero. Instead

of wall stress based on first moment of velocity field, Haehnel found the driving force of the

particle entrainment is the Reynolds stress, v′w′ (second moment of velocity field), due to

turbulent velocity fluctuation. Although, Reynolds stress is same as average shear stress based
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on the mean velocity field for steady parallel flows, it does not go to zero at the stagnation

region, as in the case of impinging jet. Haehnel also suggested the relationship of the Reynolds

stress with the turbulent kinetic energy as v′w′ = 0.2k. The current research uses Reynolds

stress, as suggested by Haehnel, to calculate the dust flux.

3.3 Dust Transport Modeling

A system or flow consisting of a mixture solid, liquid and gas phases is called a multiphase

system or flows. Multiphase flows can be classified into different categories, depending upon

the nature of the system or the flow regime. Based on the phases involved, multiphase flows

can be classified [34, 25] into various categories.

• Gas liquid flows

• Gas solid flows

• Liquid solid flows

• Three phase flows

In the case of rotorcraft brownout, flow can be considered as a solid-gas multiphase turbu-

lent dispersed flow, where air is the carrier phase and dust is the discrete phase. Both phases

have separately defined volume fraction and velocity field. Conservation equations for the flow

of each phase are solved to get the density and velocity field. Transfer of mass, momentum,

and energy between the phases are taken care through coupling between the phases.

The two different theoretical models used to solve multiphase flows are Eulerian-based

multi-fluid model and Lagrangian-based particle tracking model. In both models the fluid

is solved as a continuum phase. In the Eulerian-based model, a cloud of dust is also solved

as continuum, where as in the Lagrangian-based model each dust particle is treated as an

independent entity and the trajectories are calculated individually.

The advantages and disadvantages of both of these models have been described by many

researchers (Durst et al (1984) [35], Shirolkara et al. (1996) [36], Crowe et al. (1996) [37]]. In
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the Lagrangian-based model, since each particle is tracked separately, this model gives good

insight into particle dynamics. A disadvantage with this model is it becomes computationally

expensive when the number of particles is large. The Eulerian-based approach for particle

transport is easy to interpret and is computationally more efficient, since it solves an additional

transport equation for the discrete phase.

Mathematical modeling of multiphase flows depends on various properties of dispersed

phase flows. Some of the important properties which apply specifically to particle-gas flows

are described next.

3.3.1 Particle Stokes number

Stokes number is a dimensionless number which gives an idea of particle behavior in fluid

particle flows. The Stokes number of a particle can be defined as

Stv =
τv
τF

(3.28)

where τv is particle velocity response time given in Eq. 3.18 and τF is time characteristic of

flow field which can be given by

τF =
Lref
Uref

(3.29)

where Uref is the reference velocity of the flow field and Lref is characteristic reference length.

If Stv << 1, then the response time for particles to react to a change in flow behavior is

small. So particles will have enough time to respond to the change in flow and the particle

will have almost the same velocity as that of fluid (velocity equilibrium). If Stv >> 1, then

particle response time is high and relative velocity of the particle with respect to the flow will

be significant. An approximate relation between particle velocity, fluid velocity, and Stokes

number is given by

up
u
∼ 1

1 + Stv
(3.30)

It can be seen as Stv → 0, particle velocity attains fluid velocity; whereas, when Stv →∞,

the particle velocity approaches zero.
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3.3.2 Particle volume fraction

Particle volume fraction ,αp, is defined as volume of the particle per unit volume.

αp = lim
δV→δV o

δVp
δV

(3.31)

where δVp is the volume of the particle in the volume.

3.3.3 Particle bulk density (Dust cloud density)

Particle bulk density is the mass of particle per unit volume of mixture. In this current

work, it has also been reported as Dust Cloud Density, ρd.

ρd = lim
δV→δV o

δMp

δV
(3.32)

where δMp is the mass of particle in volume. Dust cloud density is related to particle

volume fraction, αp, and particle density, ρp, as

ρd = αpρp (3.33)

3.3.4 Particle loading

The ratio of mass flux of particle to that of mass flux of fluid is called loading Z.

Z =
Ṁp

Ṁf

(3.34)

where Ṁp is the mass flow rate of particle and Ṁf is the mass flow rate of fluid. For small

Stokes number it can be approximated as Z = ρd/ρ.

3.3.5 Dilute versus dense flows and phase coupling

Dilute flow is a flow where the motion of a particle is governed by the forces acting upon

them by the fluid, whereas in a dense flow particle motion is governed by the collisions. In
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general, if particle collision time, τc, is very large compared to particle response time, τv, then

the flow is called dilute flow, otherwise, it is a dense flow.

Figure 3.9 Dilute vs dense flows Crowe et al. (1998) [25]

Another way to differentiate dilute flow from dense flow [25] can be given in terms of

particle diameter as

dp <
3µ

Zρur
(3.35)

This relation is depicted in the Figure 3.9. For turbulent flows the relation can be given in

terms of standard deviation, σ, of particle fluctuation velocity as

dp <
1.33µ

Zρσ
(3.36)

The exchange of mass, momentum, and energy between phases is governed by phase cou-

pling parameter. Since in the rotorcraft brownout case there is no phase change of particle,

mass coupling is not considered. Similarly, energy coupling is also neglected in this present

research. Three types of momentum coupling can be considered.

1. One-way coupling : Particle is influenced by fluid through aerodynamic drag; whereas
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fluid is not being affected by the presence of particles.

2. Two-way coupling : Both particle and fluid affect each other through aerodynamic drag

and turbulence transfer.

3. Four-way coupling : In addition to two-way coupling, particle-particle collision is also

taken into consideration.

The type of coupling required for modeling muliphase flows varies from problem-to-problem.

In general, one-way coupling is straightforward and efficient. Requirement of two- or four-way

coupling is estimated through parameter magnitude estimation, which generally depends upon

factor-like particle loading Z, particle Stokes number Stv, particle bulk density ratio C = ρd/ρ,

etc.

One of the commonly used parameters to decide upon the coupling is known as momentum

coupling parameter, Πmom. An approximate definition of momentum coupling parameter is

given by Crowe et al. (1998) [25]

Πmom =
C

1 + Stv
(3.37)

If Πmom << 1, then coupling of momentum between phases is insignificant, and one way

coupling is used.

3.3.6 Rotorcraft Brownout Model

From the field studies achieved by Chatten [2] (Midwest Research Institute), on brownout

cloud characteristics on six rotorcraft configurations at the Yuma Proving Ground (YPG), it

was found that brownout dust cloud contains particles ranging from 2µm to larger than 350µm

(Figure 3.10). The mass concentration (mg/m3) at rotor tip location for various particle sizes

ranges from 10mg/m3 to 700mg/m3.

Based on these test data and other anecdotal reports, it can be inferred that the major

contributor to brownout clouds is a relatively smaller particle (0 − 62µm), since number of

particle per unit volume (number density) is highest. High particle number density causes
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Figure 3.10 Mass concentration of various particle size ranges at rotor tip

location during Sandblaster-2 field test on rotorcraft brownout

(from Midwest Research Institute (MRI) technical report

(Chatten (2007) [2]))

more scattering of light, thus causing visibility problems. Therefore, the focus of this current

research is on relatively small dust particles.

Particle Stokes Number in brownout: Considering particle density of ρp = 2800kg/m3

and air viscosity of µ = 1.7 × 105, the particle response time varies from 9 × 10−4s . τv .

3.5× 10−2s for particle range of 10µm to 62µm. Time characteristic of fluid τF can be found

in the range of 0.15s . τF . 0.6s, using Lref = 6− 12m (rotor radius) and Uref = 20− 40m/s

(wall jet velocity or rotor-induced velocity). Based on the time characteristics of particle and

fluid, the particle Stokes number varies between 1.5 × 10−3 . Stv . 0.23. This shows the

Stokes number is Stv < 1 for all dust particle sizes and Stv << 1 for smaller dust particles.

Particle loading in brownout: At a lower Stokes number, particle loading is approxi-

mated as Z = ρd/ρ. As seen from the test data, particle loading is of the order of Z ∼ 10−3,

the brouwnout flow condition can be considered as a dilute flow.

Phase coupling in brownout: With particle bulk density ratio C = ρd/ρ < 7−4, mo-

mentum coupling parameter Πmom << 1. Accordingly, flow can be considered as one-way

coupled. However, the particle bulk density ratio has been found to be comparatively large
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near the ground, which is better suited for two-way coupling. Irrespective of this, since this

zone (saltation and entrainment zone) of high bulk density ratio is generally much smaller

compared to the overall flow field, two-way coupling has been ignored for this region.

Considering the above properties of particle discrete phase during brownout and the fact

the number of particles involved is large, the Eulerian-based dust transport model has been

used to model and calculate the dust transport for the present case. With very low particle

volume fraction, volume fraction of fluid is almost equal to unity. With the one-way coupling

assumption, the fluid flow is not affected by the particle and the conservation equations (given

in CHAPTER 2) for turbulent rotor flow are solved independent of particle flow.

3.3.6.1 Dust Transport Equation

The mass transport equation of a particle can be calculated by summing the mass change

of the particle in the control volume to net efflux of mass from the control surface and the rate

of dust generation in this volume.

∂

∂t
(αpρp) +

∂

∂xi
(αpρpupi)−

∂

∂x3
(αpρpwt) = Sd (3.38)

where up is particle velocity and Sd is dust source term. The third term, ∂
∂x3

(αpρpwt),

takes care of the settling effect on a particle, due to gravity. The dust source term, Sd, is equal

to dust generation near the ground due to dust emission. The magnitude of Sd is equal to

vertical dust flux given by Eq. 3.25.

The above equation can be written in terms of particle dust density, using the relation

ρd = αpρp as

∂

∂t
(ρd) +

∂

∂xi
(ρdupi)−

∂

∂x3
(ρdwt) = Sd (3.39)

In turbulent flows, the particle velocity upi and dust density ρd can be divided into two

components, i.e., average component and fluctuating component (similar to derivation of RANS

equation) as



www.manaraa.com

44

upi = ūpi + u′pi (3.40)

ρd = ρ̄d + ρ′d (3.41)

Replacing this in the transport equation and time averaging the equation [25], the equation

can be rewritten as

∂

∂t
(ρ̄d) +

∂

∂xi
(ρ̄dūpi)−

∂

∂x3
(ρ̄dwt) = Sd −

∂

∂xi
(ρ′du

′
pi) (3.42)

With reference to Fick’s Law, the dispersion of the dust in turbulent flows can be modeled

as

− ρ′du′pi = Γd
∂ρ̄d
∂xi

(3.43)

where Γd is dispersion or diffusion coefficient of dust in turbulent flows. The magnitude of Γd

depends upon the flow characteristics and can be determined through experiments. One of the

semi-empirical formulations used in geophysical research ([24]) is

Γd = ΓF

(
1 + 4

β2w2
t

σ2

)
(3.44)

where β is a dimensionless coefficient, ΓF is the fluid diffusion coefficient, and σ is the standard

deviation of turbulent velocity. In the current research, a relatively simple expression for Γd,

mostly used in multiphase research [36], has been used.

Γd =
µpt
σpt

(3.45)

where µpt is turbulent particle viscosity and σpt is turbulent particle Schmidt number, which

varies from 0.34−0.7. Turbulent particle viscosity µpt is related to turbulent fluid eddy viscosity

µt by

µpt =
µt

1 + τv
τf

(3.46)

where τf is fluid relaxation time given by τf = 0.2k/ε [36].
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3.3.6.2 Dust Particle Velocity

The relative velocity between the dust particle and fluid is defined as

~ur = ~up − ~u (3.47)

For dilute flows with low particle response time (0.001 < τv < 0.01s), an algebraic slip for-

mulation [38, 23] is used to calculate particle relative velocity. Assuming that local equilibrium

has been reached between the particle and fluid, the relative velocity can be given by

~ur =
τv
fdrag

(ρp − ρ)

ρp
~a (3.48)

where ~a is acceleration given by the mixture velocity (fluid velocity for low particle volume

fraction) as

~a = ~f − (~u.∇)~u− ∂~u

∂t
(3.49)

where ~f is the acceleration due to body force. Since no electrostatic, magnetic effect, or other

body forces have been considered and the effect of gravitational force has already been taken

into account in the particle transport equation using the terminal velocity, wt, f = 0 has been

used to calculate particle relative velocity.

In turbulent flow, a diffusion term is added to the relative velocity to accommodate the

effect of turbulent fluctuations.

~ur =
τv
fdrag

(ρp − ρ)

ρp
~a+ ~utr (3.50)

where

~utr = µpt
1

ρd
∇ρd (3.51)
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CHAPTER 4. NUMERICAL METHOD AND ALGORITHM

The transport equation for all the flow variables are solved using Finite Volume Method

(FVM). Structured Cartesian grid has been used to discretize the domain.

4.1 General Convection-Diffusion Equation

The general Convection-Diffusion equation in three-dimensional Cartesian system can be writ-

ten as:

∂

∂t
(ρφ) +

∂

∂x

(
ρuφ− Γ

∂φ

∂x

)
+

∂

∂y

(
ρvφ− Γ

∂φ

∂y

)
+

∂

∂z

(
ρwφ− Γ

∂φ

∂z

)
= S (4.1)

where S is the external source term, and u, v and w denote the velocity components in the x,

y and z directions, respectively.

The equation can be simplified as:

∂(ρφ)

∂t
+
∂Jx
∂x

+
∂Jy
∂y

+
∂Jz
∂z

= S (4.2)

where Jx , Jy and Jz represent the total (convection plus diffusion) fluxes defined by:

Jx ≡ ρuφ− Γ
∂φ

∂x
(4.3)

Jy ≡ ρvφ− Γ
∂φ

∂y
(4.4)

Jz ≡ ρwφ− Γ
∂φ

∂z
(4.5)

For a control volume given in Figure 4.1, the scalar variable φ is located at the control volume
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center, P . The discretized form of this equation is obtained upon integration over the control

volume and is given by the following equation.

[(ρφ)− (ρφ)0]
∆x∆y∆z

∆t
+ α(Jφ−e − Jφ−w + Jφ−n − Jφ−s + Jφ−t − Jφ−b) +

(1− α)((J0
φ−e − J0

φ−w + J0
φ−n − J0

φ−s + J0
φ−t − J0

φ−b) =

α(SC + SPφ) + (1− α)(S0
C + S0

Pφ
0)∆x∆y∆z (4.6)

The subscripts e, w, etc. refer to the values computed at the control volume faces, as seen

in Figure 4.1. The source term S has been linearized as S = SC + SPφ. For the unsteady

term, ρ and φ are assumed to prevail over the entire control volume. The ’old’ values from the

previous time step are denoted by subscript o.

Figure 4.1 The control volume for scalar variable φ.

For incompressible flows, the continuity equation reduces to:

(Fe − Fw + Fn − Fs + Ft − Fb) = 0 (4.7)

(F 0
e − F 0

w + F 0
n − F 0

s + F 0
t − F 0

b ) = 0 (4.8)

Multiplying the continuity equation (Eq. 4.8) by αφ for the current values and (1− α)φ0 for

the ‘old’ values and subtracting them from the discretized Convection-Diffusion Equation, we
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get:

(φ− φ0)ρ0 ∆x∆y∆z

∆t
+ α[(Jφ−e − Feφ)− (Jφ−w − Fwφ) +

(Jφ−n − Fnφ)− (Jφ−s − Fsφ) +

(Jφ−t − Ftφ)− (Jφ−b − Fbφ)] +

(1− α)[(J0
φ−e − F 0

e φ
0)− (J0

φ−w − F 0
wφ

0) +

(J0
φ−n − F 0

nφ
0)− (J0

φ−s − F 0
s φ

0) +

(J0
φ−t − F 0

t φ
0)− (J0

φ−b − F 0
b φ

0)]

= α(SC + SPφ) + (1− α)(S0
C + S0

Pφ
0)∆x∆y∆z (4.9)

The terms, such as (Jφ−e − Feφ), can be rewritten as follows:

Jφ−e − Feφ = aE(φ− φE) (4.10)

Jφ−w − Fwφ = aW (φW − φ) (4.11)

Jφ−n − Fnφ = aN (φ− φN ) (4.12)

Jφ−s − Fsφ = aS(φS − φ) (4.13)

Jφ−t − Ftφ = aT (φ− φT ) (4.14)

Jφ−b − Fbφ = aB(φB − φ) (4.15)

where the coefficients are obtained by the following equations:

aE = DeA(|Pe|) + [[−Fe, 0]] (4.16)

aW = DwA(|Pw|) + [[Fw, 0]] (4.17)

aN = DnA(|Pn|) + [[−Fn, 0]] (4.18)

aS = DsA(|Ps|) + [[Fs, 0]] (4.19)

aT = DtA(|Pt|) + [[−Ft, 0]] (4.20)

aB = DbA(|Pb|) + [[Fb, 0]] (4.21)
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The subscripts E, W , etc. denote the neighboring control volume center values.

The diffusion terms are computed from:

De =
Γe∆y∆z

(δx)e
(4.22)

Dw =
Γw∆y∆z

(δx)w
(4.23)

Dn =
Γn∆x∆z

(δy)n
(4.24)

Ds =
Γs∆x∆z

(δy)s
(4.25)

Dt =
Γt∆y∆x

(δz)t
(4.26)

Db =
Γb∆y∆x

(δz)b
(4.27)

and the Peclet numbers from:

Pe =
Fe
De

(4.28)

Pw =
Fw
Dw

(4.29)

Pn =
Fn
Dn

(4.30)

Ps =
Fs
Ds

(4.31)

Pt =
Ft
Dt

(4.32)

Pb =
Fb
Db

(4.33)

For the Power Law scheme, the function A(|P |) is computed from:

A(|P |) = [[0, (1− 0.1|P |)5]] (4.34)
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and the equation becomes

φ
ρ∆x∆y∆z

∆t
+ α(aE + aW + aN + aS + aT + aB − SP∆x∆y∆z)φ

= α(aEφE + aWφW + aNφN + aSφS + aTφT + aBφB) +

(1− α)[a0
Eφ

0
E + a0

Wφ
0
W + a0

Nφ
0
N + a0

Sφ
0
S + a0

Tφ
0
T + a0

Bφ
0
B]−

(1− α)[a0
E + a0

W + a0
N + a0

S + a0
T + a0

B − S0
P∆x∆y∆z]φ0 +

φ0 ρ∆x∆y∆z

∆t
+ ∆x∆y∆z(αSC + (1− α)S0

C) (4.35)

This equation can be rewritten as:

ρ
∆x∆y∆z

∆t
φ+ α aP φ = α(aEφE + aWφW + aNφN + aSφS + aTφT + aBφB) + btotal (4.36)

where:

aP = aE + aW + aN + aS + aT + aB − SP∆x∆y∆z (4.37)

btotal = α b+ bo (4.38)

b = SC∆x∆y∆z (4.39)

bo = (1− α)[a0
Eφ

0
E + a0

Wφ
0
W + a0

Nφ
0
N + a0

Sφ
0
S + a0

Tφ
0
T + a0

Bφ
0
B]

−(1− α)a0
Pφ

0 + ρ
∆x∆y∆z

∆t
φ0 + (1− α)b0 (4.40)

4.1.1 Scalar variables

The scalar variables φ, diffusion coefficient Γ, and source term (S) for each scalar transport

equation is given in Table 4.1.

It should be noted that for dust transport equation particle density ρp and particle velocities

upi is used in place of fluid density ρ and fluid velocities ui respectively.

Source term linearization is completed in the following manner.
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Table 4.1 Coefficient and source term for scalar transport equations

φ Γ S

Spalart-Allmaras ν̃ ρ
σ (ν + ν̃) ρCb1[1− ft2]S̃ν̃ + ρ

σCb2|∇ν|
2

+ρ
[
Cw1fw − Cb1

κ2
ft2

] (
ν̃
d

)2
+ ρft1∆U2

Standard k − ε k
(
µ+ µt

σk

)
Pk − ρε

ε
(
µ+ µt

σε

)
C1ε

ε
kPk − C2ερ

ε2

k

Realizable k − ε k
(
µ+ µt

σk

)
Pk − ρε

ε
(
µ+ µt

σε

)
ρC1Sε− ρC2

ε2

k+
√
νε

Dust Transport αp
µtp
σtp

F

Spalart-Allmaras

For ν̃ equation

SC =
ρ

σ
Cb2|∇ν|2 + ρft1∆U2

+ν̃max

[
0, ρCb1[1− ft2]S̃ + ρ

[
Cw1fw −

Cb1
κ2

ft2

](
ν̃

d2

)]

SP = min

[
0, ρCb1[1− ft2]S̃ + ρ

[
Cw1fw −

Cb1
κ2

ft2

](
ν̃

d2

)]
(4.41)
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Standard k − ε

For k equation

SC = Pk

SP = −ρcµρk
µt

(4.42)

For ε equation

SC = C1ε
ε

k
Pk

SP = −C2ερ
ε

k
(4.43)

Realizable k − ε

For k equation

SC = Pk

SP = −ρcµρk
µt

(4.44)

For ε equation

SC = ρC1Sε

SP = −ρC2
ε

k +
√
νε

(4.45)

Dust Transport

For αP equation

SC = F

SP = 0 (4.46)
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4.2 Momentum Equations

The discretized momentum equations for the velocities can be derived similarly from the general

Convection-Diffusion Equation with the φ term replaced by the velocity components u, v and

w. In this research, a staggered mesh is used. This means the velocity components u, v and w

are positioned at different control volume faces as seen in Figure 4.2. Therefore, the equations

must be adjusted accordingly.

(a) u-momentum control volume (b) v-momentum control volume

Figure 4.2 Control volumes of u and v momentum

If the source term (btotal) of u, v, and w momentum equations in the discretized momentum

are denoted as btotalu , btotalv , and btotalw , then the discretized form of the momentum equation for

u becomes:

ρ
∆x∆y∆z

∆t
uP + αauPuP = α(aEuE + aWuW + aNuN + aSuS + aTuT + aBuB) + btotalu (4.47)
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where

auP = aE + aW + aN + aS + aT + aB − SuP∆x∆y∆z (4.48)

btotalu = αbu + buo + (pW − pE)∆y∆z (4.49)

bu = SuC∆x∆y∆z (4.50)

buo = (1− α)[a0
Eu

0
E + a0

Wu
0
W + a0

Nu
0
N + a0

Su
0
S + a0

Tu
0
T + a0

Bu
0
B]

−(1− α)(auPuP )0 + ρ
∆x∆y∆z

∆t
u0 + (1− α)b0u (4.51)

Similar expressions can be written for v- and w- momentum equations as:

ρ
∆x∆y∆z

∆t
vP + αavP vP = α(aEvE + aW vW + aNvN + aSvS + aT vT + aBvB) + btotalv (4.52)

where

avP = aE + aW + aN + aS + aT + aB − SvP∆x∆y∆z (4.53)

btotalv = αbv + bvo + (pS − pN )∆x∆z (4.54)

bv = SvC∆x∆y∆z (4.55)

bvo = (1− α)[a0
Ev

0
E + a0

W v
0
W + a0

Nv
0
N + a0

Sv
0
S + a0

T v
0
T + a0

Bv
0
B]

−(1− α)(avP vP )0 + ρ
∆x∆y∆z

∆t
v0 + (1− α)b0v (4.56)

and

ρ
∆x∆y∆z

∆t
wP +αawPwP = α(aEwE +aWwW +aNwN +aSwS +aTwT +aBwB) + btotalw (4.57)
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where

awP = aE + aW + aN + aS + aT + aB − SwP∆x∆y∆z (4.58)

btotalw = αbw + bwo + (pB − pT )∆x∆y (4.59)

bw = SwC∆x∆y∆z (4.60)

bwo = (1− α)[a0
Ew

0
E + a0

Ww
0
W + a0

Nw
0
N + a0

Sw
0
S + a0

Tw
0
T + a0

Bw
0
B]

−(1− α)(awPwP )0 + ρ
∆x∆y∆z

∆t
w0 + (1− α)b0w (4.61)

4.2.1 Pressure correction equation

The discretized momentum can be solved similar to discretized scalar equations, if the

pressure field is given. Since the correct pressure field is not known initially, a guessed pressure

field is used to solve for the velocity field. Since the pressure filed is not correct, the calculated

velocity field may not satisfy the continuity equation. Thus, a correction (pressure) is applied

to correct the velocity filed such that the mass conservation is satisfied in each computational

cell. The pressure correction is calculated by solving the pressure correction equation.

For the pressure control volume Pp, the discretized momentum equation of east face u

velocity can be written similar to Eq. 4.51 as

aeue = Σanbunb + b+ (pP − pE)Ae (4.62)

where subscript nb denotes neighboring point and b is the source term without the pressure

term. If the guessed pressure filed is denoted by p∗, then the imperfect velocity is denoted as

u∗, v∗, and w∗. These imperfect velocity fields are solution of the following discretized equation

aeu
∗
e = Σanbu

∗
nb + b+ (p∗P − p∗E)Ae (4.63)

anv
∗
n = Σanbv

∗
nb + b+ (p∗P − p∗N )An (4.64)

atw
∗
e = Σanbw

∗
nb + b+ (p∗P − p∗T )At (4.65)
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Solving the velocities using the discretized momentum equation with guessed pressure field

p∗ in general will not satisfy the continuity equation. If p′ is the pressure correction required

to get the correct pressure field then

p = p∗ + p′ (4.66)

The velocity is corrected as

u = u∗ + u′

v = v∗ + v′

w = w∗ + w′ (4.67)

Subtracting Eq. 4.65 from Eq. 4.62, and using Eq. 4.67, we have

aeu
′
e = Σanbu

′
nb + (p′P − p′E)Ae (4.68)

by dropping the Σanbu
′
nb term

aeu
′
e = (p′P − p′E)Ae (4.69)

u′e = de(p
′
p − p′E) (4.70)

where

de ≡
Ae
ae
. (4.71)

The Eq. 4.70 is called the velocity-correction formula. The corrected velocities are given as

ue = u∗e + de(p
′
p − p′E)

vn = v∗n + dn(p′p − p′N )

wt = w∗t + dt(p
′
p − p′T ) (4.72)

The discretized equation of p′ is obtained from continuity equation. The continuity equation
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is

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (4.73)

Integrating the equation over the pressure control volume yields

(ρP − ρ0
P )∆x∆y∆z

∆t
+ [(ρu)e − (ρu)w] ∆y∆z + [(ρv)n − (ρv)s] ∆z∆x

+ [(ρw)t − (ρw)b] ∆x∆y = 0 (4.74)

Substituting the velocity component by the velocity correction expression (Eq. 4.72) gives

aP p
′
P = aEp

′
E + aW p

′
W + aNp

′
N + aSp

′
S + aT p

′
T + aBp

′
B + b (4.75)

where

aE = ρede∆y∆z

aW = ρwdw∆y∆z

aN = ρndn∆z∆x

aS = ρsds∆z∆x

aT = ρtdt∆x∆y

aB = ρbdb∆x∆y

aP = aE + aW + aN + aS + aT + aB

b =
(ρP − ρ0

P )∆x∆y∆z

∆t
+ [(ρu∗)e − (ρu∗)w] ∆y∆z

+ [(ρv∗)n − (ρv∗)s] ∆z∆x+ [(ρw∗)t − (ρw∗)b] ∆x∆y (4.76)

4.2.2 The pressure equation

Since, in the velocity correction equations, the neighbor-point velocity correction is not

considered, the pressure correction has the entire responsibility to correct the velocity field.

This leads to severe pressure-correction fields, which is efficient in correcting the velocity field,
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but pressure field may not be calculated properly. To overcome this problem, the pressure is

calculated through pressure equation and pressure-correction is only used for correcting the

velocities.

The momentum equation can be re-written as

ue =
Σanbunb + b

ae
+ de(pP − pE) (4.77)

Defining pseudo-velocity ûe by

ûe =
Σanbunb + b

ae
(4.78)

The momentum equation can be written as

ue = ûe + de(pP − pE) (4.79)

Similarly other velocities can be written as

vn = v̂n + dn(pP − pN ) (4.80)

wt = ŵt + dt(pP − pT ) (4.81)

Replacing the above definition of velocity in discretized continuity equation (Eq. 4.74) we have

aP pP = aEpE + aW pW + aNpN + aSpS + aT pT + aBpB + b (4.82)

where aE , aN , aN , aS , aT , and aB are similar to pressure correction coeffiecient as given in Eqn.

4.76 and b is given by

b =
(ρP − ρ0

P )∆x∆y∆z

∆t
+ [(ρû)e − (ρû)w] ∆y∆z

+ [(ρv̂)n − (ρv̂)s] ∆z∆x+ [(ρŵ)t − (ρŵ)b] ∆x∆y (4.83)
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4.2.3 The SIMPLER algorithm

The SIMPLER algorithm [11] consist of solving the pressure equation to obtain the pressure

field and uses the pressure-correction filed only to correct the velocity field. The algorithm

follows :

1. Start with a given initial flow field.

2. Calculate the unsteady portion of the center coefficients.

3. Calculate the unsteady portion of the source terms.

4. Calculate the coefficients of the momentum equations and the pseudo-velocities.

5. Using the pseudo-velocities, calculate the source term for the pressure equation.

6. Calculate the coefficients for the pressure equation and solve the pressure equation to

obtain the pressure field.

7. Using the calculated pressure field, solve the momentum equations to obtain the velocity

field (u, v, and w).

8. Calculate the source terms of the pressure correction equation and solve for the pressure

corrections.

9. Correct the velocities using the velocity correction equations.

10. Return to Step 4 and repeat until convergence.

11. Go to Step 2 and start with a new time level.

4.3 Boundary conditions

To solve the discretized equations, boundary conditions are needed for each transport

equation. Mainly three boundary conditions, inlet, outlet, and wall boundary conditions, have

been used in almost all the simulations carried out in this current research.
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4.3.1 Inlet boundary conditions

Momentum Equation: Inlet velocity is provided.

Spalart-Allmaras Model: Turbulent viscosity ratio, νt/ν, is provide at the inlet. In

general, the turbulent viscosity ratio varies from 3.0 to 10.0.

k − ε Model: Turbulent intensity (I) and turbulent length scale (l) are provided, based

on the turbulent kinetic energy and turbulent dissipation calculated.

kinlet =
3

2
(U I)2 (4.84)

εinlet = C
3
4
µ
k

3
2

l
(4.85)

Turbulent intensity of 1 to 10% has been used. Turbulent length scale of the order rotor

radius(l ≈ R), has been used.

Dust Transport Model: Dust concentration at inlet is zero αp = 0.

4.3.2 Outlet boundary conditions

Momentum Equation: Outlet velocity is calculated, based on mass conservation, such

that

ṁout = ṁin (4.86)

where ṁout is total mass outflow from all outlet boundaries and ṁin is the inflow from inlet

boundaries.

Spalart-Allmaras Model: Neumann boundary condition is used such that

∂ν̃

∂n
= 0 (4.87)
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k − ε Model: Neumann boundary condition is used such that

∂k

∂n
= 0

∂ε

∂n
= 0 (4.88)

Dust Transport Model:Neumann boundary condition is used such that

∂αp
∂n

= 0 (4.89)

4.3.3 Wall boundary condition

Momentum Equation: No-slip boundary condition is used such that velocity on the

face of the wall is zero. In the case of k − ε model, µe is calculated on the wall faces using

the function approach (discussed in APPENDIX-1). For the cells which lie inside the body

geometry, the diffusion is set to infinite.

Spalart-Allmaras Model:

ν̃ = 0 (4.90)

k − ε Model: k − ε model cannot be integrated to the wall. To bridge this, wall function

(discussed in APPENDIX-1) is used to provide the boundary condition.

Dust Transport Model: Dust concentration at the wall has been taken to be zero.

αp = 0 (4.91)

4.3.4 Computational process

During the computational process, RANS equation is solved first at each time step. While

solving the RANS, the rotor source model is invoked at each iteration to add the rotor source

terms. From the converged flowfield, the turbulent properties are solved by solving turbulence

models. After the calculation of flow field variables, the dust tranport model is started, which

is solved for dust concentration. The entire algorithm is given in the flow chart shown in Figure
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4.3.

Figure 4.3 Flowchart of Rotorcraft Brownout Model
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CHAPTER 5. RESULTS

A three-dimensional Cartesian grid-based incompressible laminar solver has been developed

from an existing two-dimensional solver. This three-dimensional solver has been used as a

testbed for implementing, validating, and testing various turbulence models and the brownout

dust transport model. For solving the rotor flow, the existing rotor source model has been

integrated with the turbulent solver.

5.1 Validation

5.1.1 3D incompressible solver

To validate the three-dimensional laminar incompressible solver, a standard test case of lid

driven cavity has been used. In this test case, the cavity is cube shaped with 1m length(l) and

the lid moves at constant speed (Ulid) of 1m/s. The test has been completed at two Reynolds

numbers of 100 and 400, where the Reynolds number is defined as

Re =
ρUlidl

µ
(5.1)

The wall of the cavity has been modeled as viscous no slip boundary condition. The domain

is discretized into a 42× 42× 42 non-uniform grid.

Results of center plane velocity distributions are compared with Flux Corrector Method

(FCM) used by Wirogo [39]. At Re = 100, horizontal velocity, u, and vertical velocity, v, at

center plane are plotted in Figure 5.1. For Re = 400, horizontal velocity (u) and vertical

velocity (v) at center plane are plotted in Figure 5.2. The contour plot of velocity magnitude

at center plane for both Reynolds numbers is plotted in Figure 5.3
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Figure 5.1 u and v velocity at center plane in driven cavity at Re = 100

Figure 5.2 u and v velocity at center plane in driven cavity at Re = 400

At both the Reynolds numbers, u velocity profiles match well with FCM. In the v velocity

profile, the present scheme (Power-Law) predicts a higher maximum velocity, due to the high

numerical diffusivity caused by the first order scheme.

5.1.2 Turbulence models

Four turbulence models have been integrated with the 2D and 3D incompressible solvers.

The first test is achieved by simulating turbulent flow over the 2D flat plate. Skin friction

coefficient (Cf = 2τw/ρV
2

inf) is plotted against Reynolds number (Re = ρVinfx/µ) for all

turbulence models in Figure 5.4. Results are compared with empirical formulation for skin
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Figure 5.3 Velocity magnitude contour plot at center plane of driven cavity

at Re = 100 and 400

friction over the square plate for turbulent flows by Schlichting [40]

Cf =
0.059

Re
(1/5)
x

(5.2)

The Baldwin-Lomax and Spalart-Allmaras models give good comparisons for most of the

Reynolds number range. Both k − ε models over-predict skin friction at a relatively low

Reynolds number (< 3.0× 105). This is because both k− ε models used are for high Reynolds

number fully turbulent flows. Among both k− ε models, Realizable k− ε gives a better results.

Another case of 3D circular impinging jet is used for comparing the turbulence models.

Circular impinging jet closely resembles rotorcraft in ground effect, which have various features

like recirculation, stagnation zone, and wall jet.

The simulation set-up is shown in Figure 5.5. Set-up and flow condition are similar to

experiments carried out by Cooper et al. [41]. In this present case, the H/D ratio is taken

to be 2 and Reynolds number is 70, 000, where Reynolds number is based on impinging bulk

velocity and diameter of nozzle.

Velocity profiles at three different radial locations (r/R = 1.0, 2.0 and 3.0) are plotted in

Figure 5.6 for all turbulent models and have been compared with the experimental results.

Velocity magnitude contour plots for all the cases are shown in Figure 5.7.
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Figure 5.4 Skin friction coefficient with Reynolds number on flat plate

It can be seen that at r/R = 1.0, Laminar and the Baldwin-Lomax model give the best

result. Further downstream in the wall jet region, both laminar and Baldwin-Lomax model

over-predict the maximum wall jet velocity and at higher heights under-predict the profile

velocity. In the wall jet region, one-equation model and two-equation model give better com-

parisons.

Turbulent shear stress u′w′ is also plotted at various radial locations in Figure 5.8. It can

be seen that none of the linear eddy viscosity-based model predicts the turbulent shear stress

accurately. The reason, as given by Craft et al. [42], is due to anisotropic behavior of turbulent

fluctuating velocity in the impinging jet case, where turbulent kinetic energy is dominated by

normal straining and fluctuating velocity normal to the wall is larger than that parallel to the

wall at the impingement zone. Nevertheless, after comparing all the results, the two-equation

model seems to give the best qualitative results.
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Figure 5.5 Impinging jet simulation set up

(a) r/R = 1.0 (b) r/R = 2.0

(c) r/R = 3.0

Figure 5.6 Impinging jet velocity profile
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(a) Baldwin-Lomax (b) Spalart-Allmaras

(c) Standard k − ε (d) Realizable k − ε

(e) Laminar

Figure 5.7 Velocity magnitude contour plot (impinging jet)
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(a) r/R = 1.0 (b) r/R = 2.0

(c) r/R = 3.0

Figure 5.8 Reynolds Shear Stress u′w′ in impinging jet
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5.1.3 Rotor model validation

To validate rotor source modeling, simulation has been accomplished on a rotor similar

to experiments completed by Rabbott [43]. A two-bladed rotor has been used with 15ft

diameter. Simulations were carried out at various collective pitches (Θ). For the current

simulation, NACA0012 airfoil was used. Chord length was 0.153 times the radius and there

was zero twist along the blade. The variation of aerodynamic blade load with radial locations

at various collective pitches is plotted in Figure 5.9.

(a) Θ = 3.0o (b) Θ = 4.5o

(c) Θ = 8.5o (d) Θ = 9.2o

Figure 5.9 Aerodynamic blade load comparisons with Rabbott’s experi-

ment at various Θ

The rotor source model with tip correction, is able to perfectly capture the trend of the
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aerodynamic load along the blade radius.

5.1.4 Brownout model validation

It is very difficult to validate the brownout model. There have not been many quantitative

experimental data on brownout. The present model has been qualitatively validated with wind

tunnel experiments conducted by Nathan and Green [44] at University of Glasgow. In their

experiment, a small model rotor was used and was placed at one radius above the ground.

The wind tunnel speed was set so the thrust-normalized advanced ratio µ∗ is equal to 0.65.

Thrust-normalized advanced ratio was given by

µ∗ =
µ√

(CT /2)
(5.3)

where µ is rotor advance ratio and CT is coefficient of thrust.

µ = V cosα/(ΩR) (5.4)

where α is tilt angle, Ω is angular velocity, and R is the radius of rotor. CT is given by

CT =
T

ρ(ΩR)2A
(5.5)

where T is rotor thrust and A is rotor disc area. In their experiment, very fine, powder-like

particles were used as dust. The motion of the particle transported by rotor flow was captured

by high speed camera (Figure 5.10). Simulation was achieved on a similar rotor and flow

condition using the current brownout model. Dust particle density distribution and velocity

are shown in Figure 5.11. It can be seen that the numerical model was able to capture the

same extent of the brownout cloud. Another remarkable feature captured by the present model

is the stagnation region of the dust particle on the ground at about one radius upstream.
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Figure 5.10 Particle transport by rotor downwash in wind tunnel experi-

ment (Nathan et al. (2008) [44])

(a) Dust particle Density

(b) Particle velocity vector

Figure 5.11 Dust particle distribution predicted by brownout model
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5.2 Turbulence Model Comparison for Rotor in Ground Effect

For the selection of an appropriate turbulence model for further studies, simulation was

carried out with all turbulence models to solve for turbulent rotor flow. The focus of this study

was to verify the ability of various turbulence model to predict rotor outwash and wall jet of a

hovering rotor in ground effect. This study used the CH-53E rotor, hovering at a height of two

rotor radius at thrust coefficient CT = 0.007. The field test data are documented by Preston

[45].

Comparisons of various turbulence models (Laminar, Baldwin-Lomax, Spalart Allmaras,

Standard k−ε, and Realizable k−ε) with flight test data and Vorticity Transport Model (VTM)

used by Phillips and Brown [46] for ground velocity profiles at different radial locations are

shown in Figure 5.12.

As seen in these plots, all models under-predict the maximum wall jet velocity particularly

close to the rotor, at radial position r/R = 1.0, 1.25 and 1.5. The reason might be due to

the presence of the fuselage in flight test data not modeled in the current simulations. In the

wall jet region at r/R = 1.75 and above, all models closely predict maximum wall jet velocity.

Although at farther radial locations, models predict lower velocity at higher height. This might

be due to numerical diffusion caused by first order schemes and the turbulence models used.

Near the wall jet region, Standard k − ε and Realizable k − ε have the best comparisons.

Based on the these outcomes and results from the circular impinging jet case, the Realizable

k − ε model was found to be most suitable and was used for all subsequent simulations.
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(a) r/R = 1.0 (b) r/R = 1.25

(c) r/R = 1.50 (d) r/R = 1.75

(e) r/R = 2.0 (f) r/R = 3.0

Figure 5.12 Ground velocity profile for hovering CH-53E rotor
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5.3 Fuselage Effect on Wake and Ground Signature

To study the effects of body (fuselage) on wake and ground signature of the rotor, single

rotor helicopter was used for simulation at different heights in ground effect (IGE). Two sets of

simulations were completed, first without the fuselage (named rotor configuration) and second

with fuselage (named rotor-fuselage configuration). Height of the rotor center was varied from

H = 0.5R to 8R. The properties of the rotor are given in Table 5.1.

Table 5.1 Rotor properties for helicopter in hover

Rotor radius(R) 12m

Number of blades 7

Twist −17o (linear)

Root cutout 0.325

Hinge offset 0.0633

Chord 0.0617R

The blade collective pitch was maintained so that the coefficient of thrust was 0.007 when

hovering at H = 1.0R.

Simulation was in full turbulence mode, with Realizable k − ε model. The mesh size of

103 and 84 in x and y direction, respectively, was used, with a refined grid around the body.

Approximately 50 cells were used along the rotor diameter were used to properly capture the

rotor flow. The mesh size in the z direction varied from 75 to 94 for rotors at different heights

with a refined grid around the body and rotor. The refined grid with stretching was used near

the ground to capture the rotor outwash properly. Simulation time for each configuration was

between 15 to 25s, depending upon the time required by the wall jet to reach the steady state.

The ground signature was represented as the distribution of friction velocity (u∗ =
√
τw/ρ)

along the ground. This gave an idea of erosion capability of the rotor downwash and outwash.

The erosion and dust entrainment took place in the region where the ground friction velocity

was higher than the particle threshold friction velocity. Ground signature of rotor wake and

oil flow pattern, with and without fuselage, at different heights are shown in Figures 5.13 to

5.21. The black color circle shows the position of the rotor.

As seen, effects of fuselage are significant at most heights. At lower height of H = 0.5 and
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0.75R, the strength and extent of ground signature outside the rotor perimeter is not much

different for rotor and rotor-fuselage configuration, except near the tail of fuselage. There

is a fuselage footprint of low friction velocity zone just below the rotor. The effect is more

pronounced between height of H = 1.0 and 3R. A zone of high ground friction velocity around

the perimeter of rotor was observed for rotor-fuselage configuration between these heights.

This is due to an increase in downwash velocity in the presence of a body in the rotor wake.

The extent of the ground signature is almost the same between both configurations except it

is a little distorted due to the tail of the fuselage in the rotor-fuselage configuration.

An interesting observation was found in the pattern of oil flow distribution for rotor-fuselage

configuration. With an increase in rotor height, the shadow of the fuselage (tadpole-like shape

made by the oil flow pattern) can be seen rotating counter-clock wise. This is due to the

swirling flow nature of the rotor wake.

(a) Rotor only (b) Rotor and Fuselage

Figure 5.13 Ground friction velocity at rotor height H = 0.5R
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(a) Rotor only (b) Rotor and Fuselage

Figure 5.14 Ground friction velocity at rotor height H = 0.75R

(a) Rotor only (b) Rotor and Fuselage

Figure 5.15 Ground friction velocity at rotor height H = 1.0R
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(a) Rotor only (b) Rotor and Fuselage

Figure 5.16 Ground friction velocity at rotor height H = 1.5R

(a) Rotor only (b) Rotor and Fuselage

Figure 5.17 Ground friction velocity at rotor height H = 2.0R
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(a) Rotor only (b) Rotor and Fuselage

Figure 5.18 Ground friction velocity at rotor height H = 2.5R

(a) Rotor only (b) Rotor and Fuselage

Figure 5.19 Ground friction velocity at rotor height H = 3.0R
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(a) Rotor only (b) Rotor and Fuselage

Figure 5.20 Ground friction velocity at rotor height H = 4.0R

(a) Rotor only (b) Rotor and Fuselage

Figure 5.21 Ground friction velocity at rotor height H = 8.0R
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The contour plot of velocity magnitude for rotor and rotor-fuselage configuration at rotor

height of H = 0.5 to 2R is shown in Figures 5.22 to 5.25. This plot is shown in the longitudinal

plane (along the fuselage) and four cross planes (slices) as show in the figures. A front view of

all planes (slice A to D) is shown in four thumbnails below each figure.

It is observed that at height 0.5R, the rotor wake and outwash are not much affected by

the presence of the fuselage. The same observation can be found in the ground signature

discussed earlier. At heights H = 1.0 to 2.0R, the effect of fuselage can be clearly seen in all

slices. In addition to the unsteady behavior below the fuselage, two major differences are the

increase in the bulk velocity of rotor wake and increase in the wall jet velocity. Presence of

fuselage decreases the flow area, thus, the fuselage increases the downwash velocity. Increase

in downwash velocity increases the wall jet velocity.

The ground velocity profile at three different lateral positions from rotor center (y = 1,

2, and 3R) for different rotor heights are shown in Figure 5.26. The comparison has been

made between rotor configurations and rotor-fuselage configurations. As seen in the figure, the

velocity profile for both configurations are not much different at lower heights (H = 0.5 and

0.75R). As observed earlier, fuselage effect is most significant between H = 1.0 to 3R, after

which the effect starts to decrease. The maximum wall jet velocity at three radial locations for

different heights is plotted in Figure 5.27. At the lateral position y = 1.0R, the wall jet velocity

first decreases with height for heights below 3R and then increases for higher heights for both

configurations. At all the heights, the wall jet velocity for the rotor-fuselage configuration is

always higher at this position. At the lateral position y = 2.0R, the wall jet velocity decreases

and becomes asymptotic to a constant value. At lower heights, H < 2.5R, wall jet velocity

for the rotor-fuselage configuration is higher than the rotor configuration. There is a crossover

at H = 2.5R. The wall jet velocity for the rotor is higher. This same trend is observed at

y = 3.0R, but the crossover takes place at H = 2R. The difference in wall jet velocity between

both configurations follows the same trend at all the locations, which reaches a maximum

around H = 1.5R.
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(a) Rotor only

(b) Rotor and Fuselage

Figure 5.22 Velocity magnitude contours at H = 0.5R
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(a) Rotor only

(b) Rotor and Fuselage

Figure 5.23 Velocity magnitude contours at H = 1.0R
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(a) Rotor only

(b) Rotor and Fuselage

Figure 5.24 Velocity magnitude contours at H = 1.5R
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(a) Rotor only

(b) Rotor and Fuselage

Figure 5.25 Velocity magnitude contours at H = 2.0R
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(a) H = 0.5R (b) H = 0.75R

(c) H = 1.0R (d) H = 1.5R

(e) H = 2.0R (f) H = 2.5R

Figure 5.26 Ground velocity profile at different radial location for different

rotor heights
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(a) H = 3.0R (b) H = 4.0R

(c) H = 8.0R

Figure 5.26 (continued) Ground velocity profile at different radial location for different rotor heights
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(d) y = 1.0R (e) y = 2.0R

(f) y = 8.0R

Figure 5.27 Wall jet velocity at different radial locations
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5.4 Fuselage Effect on Brownout

To study the fueslage effect of the brownout, the particle transport model has been used

for two configurations, rotor-only configuration and rotor-fuselage configuration, at different

heights. Rotor properties are the same as in the last section with NACA0012 airfoil. For

all subsequent simulations, particle size of dp = 10µm is used with a particle density of ρd =

2800kg/m3. The roughness length on the ground is taken as zo = 250µm.

The brownout cloud after t = 5s (≈ 15 rotor revolution) is shown in Figure 5.28 for both

configurations. Dust clouds shown in the images are the iso-surface of dust cloud density (ρd)

of 50mg/m3. At a height of 0.5R, substantial differences in dust cloud patterns are observed.

A fountain of dust can be seen coming out around the region of rotor center in rotor-only

configuration. In rotor-fuselage configurations, the rise in dust is blocked by the presence of

the body. To visualize the dust characteristics near the rotorcraft, the dust cloud in the rear

of the rotor center lateral plane (y-z plane) is removed, as shown in Figure 5.29. The various

layers (iso surface) of dust density can be seen through the removed side as seen in Figure 5.30,

where the x-axis is normal to the images. These images also give an idea of the extent of dust

cloud height forming ahead of the rotor. As the height of the rotor increases, the height of the

dust fountain at the rotor’s center decreases for rotor configurations, due to the effect of rotor

downwash. In contrast, for the rotor-fuselage configurations, the height of the dust fountain

just below the fuselage increases and attempts to catch up with the fuselage. This is caused

by the recirculating flows in the wake of the fuselage, which lift the dust higher, as seen in the

particle path lines plots in Figure 5.31. This effect of the recirculating flows and the height of

the fountain below the fuselage decreases after a height of 2.0R. At all these heights, the dust

density in the dust fountain is much higher in the rotor-fuselage simulations. Even in the rotor

outwash region, higher density clouds (larger iso-surface value) are found in the rotor-fuselage

simulations.

Although the core of dust clouds in the rotor-fuselage configuration are determined denser,

the average height achieved by the dust cloud is almost the same for both configurations at

each height.
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Rotor Only Fuselage and Rotor

(a) H = 0.5R (b) H = 0.5R

(c) H = 1.0R (d) H = 1.0R

(e) H = 1.5R (f) H = 1.5R

Figure 5.28 Dust cloud formation after 5s for rotor-only and rotor-fuselage

configuration
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Rotor Only Fuselage and Rotor

(a) H = 2.0R (b) H = 2.0R

(c) H = 2.5R (d) H = 2.5R

Figure 5.28 (continued) Dust cloud formation after 5s for rotor-only and rotor-fuselage configuration
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Figure 5.29 Visualizing dust cloud characteristics
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Rotor Only Fuselage and Rotor

(a) H = 0.5R (b) H = 0.5R

(c) H = 1.0R (d) H = 1.0R

(e) H = 1.5R (f) H = 1.5R

(g) H = 2.0R (h) H = 2.0R

(i) H = 2.5R (j) H = 2.5R

Figure 5.30 Dust cloud characteristics seen through rotor center cut plane

for rotor-only and rotor-fuselage configurations
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Rotor Only Fuselage and Rotor

(a) H = 0.5R (b) H = 0.5R

(c) H = 1.0R (d) H = 1.0R

(e) H = 1.5R (f) H = 1.5R

(g) H = 2.0R (h) H = 2.0R

(i) H = 2.5R (j) H = 2.5R

Figure 5.31 Particle path lines at rotor mid plane for rotor-only and ro-

tor-fuselage configurations
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5.5 Fuselage Shape Effect on Wake and Ground Signature

To study the effect of fuselage shape on wake and ground signature, four simplified ge-

ometries with circular, elliptical, square, and rectangular cross-sections have been use for the

fuselage. The width of each fuselage is 9m. The height of elliptical and rectangular fuselage is

7m. The rotor properties are given in Table 5.2. Collective pitch has been set so the coefficient

of thrust at H = 1.0R is 0.007 for all the fuselage configurations. This is done by running

the simulation for each rotor configuration at different collective pitches to obtain a relation of

thrust coefficient and collective pitch, at a particular height. Using this relation, the collective

pitch is calculated to get the desired coefficient of thrust.

Figure 5.32 Four fuselage shapes used

Table 5.2 Rotor properties for helicopter with different fuselage shape

Rotor radius(R) 8.02m

Number of blades 4

Twist −12o (linear)

Root cutout 0.2

Hinge offset 0.03

Chord 0.0617R

Airfoil NACA0012

The ground signature (ground friction velocity) of each fuselage shape at various heights is
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plotted in Figures 5.33 to 5.37. As seen, no significant difference has been found in the ground

signature for different fuselage shapes, if the projection of the fuselage on the ground is same.

Contour plot of velocity magnitude and streamline on lateral and longitudinal rotor mid

plane are shown in Figures 5.38 to 5.40 for all fuselage shapes at heights of 0.6, 1.0, and

1.5R. At height 0.6R, flow is mostly attached below the fuselage for all configurations, except

there is a recirculation just below the fuselage nose for the square, rectangular, and elliptical

configurations. At heights of 1.0R, the region below the fuselage becomes highly unsteady for

all configurations. Recirculating flows can be seen in the front view of all configurations. Flow

is highly un-symmetric in all cases, due to unsteadiness and the swirling nature of the rotor’s

downwash. The recirculating region below the fuselage nose is also found in rectangular and

square fuselages. Similar trends are observed for all higher heights (H = 1.5R and above).

(a) Circular Fuselage (b) Square Fuselage

(c) Rectangular Fuselage (d) Elliptical Fuselage

Figure 5.33 Ground friction velocity comparison at H = 0.6R
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(a) Circular Fuselage (b) Square Fuselage

(c) Rectangular Fuselage (d) Elliptical Fuselage

Figure 5.34 Ground friction velocity comparison at H = 1.0R

(a) Circular Fuselage (b) Square Fuselage

(c) Rectangular Fuselage (d) Elliptical Fuselage

Figure 5.35 Ground friction velocity of different fuselage cross-section at

H = 1.5R
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(a) Circular Fuselage (b) Square Fuselage

(c) Rectangular Fuselage (d) Elliptical Fuselage

Figure 5.36 Ground friction velocity comparison at H = 2.0R

(a) Circular Fuselage (b) Square Fuselage

(c) Rectangular Fuselage (d) Elliptical Fuselage

Figure 5.37 Ground friction velocity comparison at H = 3.0R
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(a) Circular Fuselage (Front View) (b) Circular Fuselage (Side View)

(c) Square crosss-section(Front View) (d) Square crosss-section (Side View)

(e) Rectangular crosss-section(Front View) (f) Rectangular crosss-section (Side View)

(g) Elliptical crosss-section(Front View) (h) Elliptical crosss-section (Side View)

Figure 5.38 Velocity magnitude and streamlines for different fuselage

shapes at H = 0.6R
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(a) Circular Fuselage (Front View) (b) Circular Fuselage (Side View)

(c) Square crosss-section (Front View) (d) Square crosss-section (Side View)

(e) Rectangular crosss-section (Front View) (f) Rectangular crosss-section (Side View)

(g) Elliptical crosss-section (Front View) (h) Elliptical crosss-section (Side View)

Figure 5.39 Velocity magnitude and streamlines for different fuselage

shapes at H = 1.0R
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(a) Circular Fuselage (Front View) (b) Circular Fuselage (Side View)

(c) Square crosss-section (Front View) (d) Square crosss-section (Side View)

(e) Rectangular crosss-section (Front View) (f) Rectangular crosss-section (Side View)

(g) Elliptical crosss-section (Front View) (h) Elliptical crosss-section (Side View)

Figure 5.40 Velocity magnitude and streamlines for different fuselage

shapes at H = 1.5R
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5.6 Multi-Rotor Configuration Effect on Brownout

Full rotorcraft configurations with single rotor, tandem rotor, tilt rotor, and quad rotor

have been used for this study (Figure 5.41). The rotor properties used are given in Table

5.3. NACA0012 airfoil has been used for the rotor blades. The collective pitch of each rotor

is adjusted so the CT /σ for all the rotorcrafts are the same, while hovering at OGE (out of

ground effect). The mechanism of calculating the collective pitch is the same as discussed in

last section. σ is the solidity of the rotor given by σ = Nbc/πR, where Nb is the number of

rotor blades and c is the rotor chord.

(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.41 Rotor configurations

The simulation was carried out for four rotor heights 1.0, 1.5, 2.0, and 2.5Rref , where Rref

is the rotor radius of a single rotor helicopter. Corresponding non-dimensional heights (H/R)

for the tandem rotor are 1.33, 2, 2.66, and 3.66. For tilt and quad rotor, the non-dimensional
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Table 5.3 Properties of rotor for multi-rotor configurations

Rotor Radius Rotor Blades (per rotor) Twist σ CT

Single rotor 12m 5 12o 0.095 0.0071

Tandem rotor 9m 3 12o 0.083 0.0063

Tilt rotor 6m 3 16o 0.105 0.0076

Quad rotor 6m 3 16o 0.105 0.0077

heights (H/R) are 2, 3, 4, and 5.

Velocity streamlines at three different lateral planes – front rotor mid plane, fuselage mid

plane, and rear rotor mid plane – are plotted for tandem and quad rotors at various heights

in Figures 5.42 and 5.46. The tilt rotor streamlines are plotted on lateral rotor mid plane in

Figure 5.44. Streamlines along longitudinal plane are also plotted in Figures 5.43, 5.45, and

5.47.

In tandem rotor, large recirculating regions are observed underneath the fuselage at rotor

heights of H = 1.0, 1.5, and 2.0Rref . At fuselage mid plane, rotor wake are found to be shifted

on the starboard side. This is due to the effect of mixing two counter rotating and swirling

rotor downwashes. The rotor outwash and the wall-jet thickness in the longitudinal plane are

determined to be similar to the single rotor configuration. The recirculating region near the

ground at height 2.5Rref has diminished.

Similar to tandem rotor, tilt and quad rotor configurations show a heavy recirculating

zone below the fuselage at a height of 1.0, 1.5, and 2.0Rref . In particular, the region below

the fuselage wings is found highly unsteady. One of the major differences between tilt and

quad rotor with respect to tandem rotor is the rotor outwash and wall jet thickness along the

longitudinal plane. At lower altitudes, the outwash and the wall jet of tilt and quad rotor are

found thicker compared to tandem and single rotor. This plays a very important role in dust

particle transport in front of the fuselage.
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(a) H = 1.0Rref

(b) H = 1.5Rref

Figure 5.42 Streamlines in lateral plane for tandem rotor hovering at dif-

ferent heights
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(a) H = 2.0Rref

(b) H = 2.5Rref

Figure 5.42 (continued) Streamlines in lateral plane for tandem rotor hovering at different heights



www.manaraa.com

106

(c) H = 1.0Rref (d) H = 1.5Rref

(e) H = 2.0Rref (f) H = 2.5Rref

Figure 5.43 Streamlines in longitudinal plane for tandem rotor hovering at

different heights
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(a) H = 1.0Rref (b) H = 1.5Rref

(c) H = 2.0Rref (d) H = 2.5Rref

Figure 5.44 Streamlines in lateral plane for tilt rotor hovering at different

heights
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(a) H = 1.0Rref

(b) H = 1.5Rref

(c) H = 2.0Rref

(d) H = 2.5Rref

Figure 5.45 Streamlines in longitudinal plane for tilt rotor hovering at dif-

ferent heights
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(a) H = 1.0Rref

(b) H = 1.5Rref

Figure 5.46 Streamlines in lateral planes for quad rotor hovering at differ-

ent heights
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(a) H = 2.0Rref

(b) H = 2.5Rref

Figure 5.46 (Continued) Streamlines in lateral planes for quad rotor hovering at different heights
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(c) H = 1.0Rref

(d) H = 1.5Rref

(e) H = 2.0Rref

(f) H = 2.5Rref

Figure 5.47 Streamlines on longitudinal plane for quad rotor hovering at

different heights
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To compare the dust erosion capability of different rotor configurations, the ground signa-

ture of each configuration at different heights is plotted in Figures 5.48 to 5.51. A significant

difference of ground friction velocity has been found between single and tandem rotor with

respect to tilt and quad rotors at the same dimensional height. In particular, tandem rotor is

determined to give strong ground signature for all heights. Even at the same non-dimensional

height (H/R) of 2.0, (comparing Figures 5.50(a), 5.49(b), 5.48(c), and 5.48(d)), the tandem

rotor has the most intense ground friction.

Dust clouds (iso-surface of 50mg/m3) after simulation time of 5s for different rotor con-

figurations at different heights are shown in Figures 5.52 to 5.55. At all heights the spread of

the dust cloud is more for the single and tandem rotors. Dust characteristics along the rotor-

craft’s lateral plane is visualized by removing the dust cloud on the rear side of the fuselage

mid lateral plane. Dust characteristic seen through fuselage’s center lateral plane (front view)

are shown in Figures 5.56 to 5.59, where the x-axis is normal to the images. Similarly, for

dust characteristics along the longitudinal plane (side view), the dust cloud is removed from

the port side of the fuselage’s longitudinal plane (x-z plane) and seen through this plane in

Figures 5.60 to 5.63, where the y-axis is normal to the plane. Although in all scenarios single

and tandem rotor form more denser clouds, in terms of front visual reference, these two are

determined as better. As seen in the front view at heights 1.0 and 1.5Rref , huge dust clouds

form in front of the tilt and quad rotor, thus restricting the pilot’s front visibility. This is

mainly caused by transport of dust particles by stronger and thicker rotor outwash in front of

the fuselage in tilt and quad rotor configuration. In terms of side view perspective, tilt and

quad rotor are determined as better. There is an unusually huge dust cloud on the starboard

side of the tandem rotor at greater heights. This is caused by dust carried by the shifted rotor

downwash on the starboard side as discussed earlier.

Another interesting phenomenon observed is the dust fountain just below the fuselage tilt

and quad rotor is not as intense as compared to single and tandem rotors. This might be due

to a smaller rotor in tilt and quad rotors, thus, smaller downwash area hitting the ground as

shown in the ground signature.
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(a) Single rotor (b) Tandem rotor (c) Tilt rotor (d) Quad rotor

Figure 5.48 Ground friction velocity comparison at H = 1.0Rref

(a) Single rotor (b) Tandem rotor (c) Tilt rotor (d) Quad rotor

Figure 5.49 Ground friction velocity comparison at H = 1.5Rref

(a) Single rotor (b) Tandem rotor (c) Tilt rotor (d) Quad rotor

Figure 5.50 Ground friction velocity comparison at H = 2.0Rref

(a) Single rotor (b) Tandem rotor (c) Tilt rotor (d) Quad rotor

Figure 5.51 Ground friction velocity comparison at H = 2.5Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.52 Dust cloud comparison for multiple rotor configurations at

H = 1.0Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.53 Dust cloud comparison for multiple rotor configurations at

H = 1.5Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.54 Dust cloud comparison for multiple rotor configurations at

H = 2.0Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.55 Dust cloud comparison for multiple rotor configurations at

H = 2.5Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.56 Dust cloud characteristics through fuselage lateral mid plane

at H = 1.0Rref

(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.57 Dust cloud characteristics through fuselage lateral mid plane

at H = 1.5Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.58 Dust cloud characteristics through fuselage lateral mid plane

at H = 2.0Rref

(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.59 Dust cloud characteristics through fuselage lateral mid plane

at H = 2.5Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.60 Dust cloud characteristics through fuselage longitudinal mid

plane at H = 1.0Rref

(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.61 Dust cloud characteristics through fuselage longitudinal mid

plane at H = 1.5Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.62 Dust cloud characteristics through fuselage longitudinal mid

plane at H = 2.0Rref

(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.63 Dust cloud characteristics through fuselage longitudinal mid

plane at H = 2.5Rref
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Time evolution of dust for all configurations at height 1.0Rref is shown in Figures 5.64

- 5.68. After 2 s, the dust cloud height formed by tandem rotor is significantly higher than

for other configurations. It can be clearly seen that the major dust entrainment is from the

starboard side of the tandem rotors. After 3 s, all configurations show considerable size of dust

cloud formation. Single rotor shows dust formation all along the perimeter of the rotor. Some

effects of the fuselage tail are also found in the rear zone. The tandem rotor also shows dust

formation from all sides, but dust cloud heights are larger on the lateral sides. Dust cloud size

in the tilt rotor are comparatively small with a major evolution of dust coming from front and

rear. The quad rotor also shows similar trends with significant dust evolution from the sides

as well. After 5 s, all the configurations are almost engulfed in the dust cloud and there is no

visual reference for pilots. The single rotor still has some near rotor visual reference. After

10 s, all rotorcraft are engulfed in the cloud, without any visual reference. The dust cloud is

almost axisymmetric for a single rotor. In the tandem rotor, a huge dust cloud is seen on the

starboard side; whereas, for tilt and quad rotors, it is seen in the front and rear.

Comparison of fuselage effect on multi rotor configurations is shown in Figures 5.69 - 5.71.

Plots are shown for ground friction and dust clouds for multi-rotor configurations, with and

without fuselage, hovering at 1.0Rref . Similar to the helicopter, there is a significant effect of

fuselage on ground signature. The strength of ground friction velocity is found higher in the

case with fuselage for all configurations. Average height of the dust for rotor and rotor-fuselage

configurations are found to be almost the same, but the dust cloud density for the fuselage

rotor configurations are higher.
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.64 Dust cloud evolution after 2s at H = 1.0Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.65 Dust cloud evolution after 3s at H = 1.0Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.66 Dust cloud evolution after 5s at H = 1.0Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.67 Dust cloud evolution after 7s at H = 1.0Rref
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(a) Single rotor (b) Tandem rotor

(c) Tilt rotor (d) Quad rotor

Figure 5.68 Dust cloud evolution after 10s at H = 1.0Rref
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(a) Ground friction velocity for tandem
rotors only

(b) Ground friction velocity for tandem
rotors with fuselage

(c) Tandem rotors only (dust cloud) (d) Tandem rotors with fuselage (dust cloud)

(e) Tandem rotors only (Pilot’s front view) (f) Tandem rotors with fuselage (Pilot’s front view)

(g) Tandem rotors only (Pilot’s side view) (h) Tandem rotors with fuselage (Pilot’s side view)

Figure 5.69 Comparison of tandem rotors with and without fuselage at

H = 1.0Rref
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(a) Ground friction velocity for tandem
rotors only

(b) Ground friction velocity for tandem
rotors with fuselage

(c) Tilt rotors only (dust cloud) (d) Tilt rotors with fuselage (dust cloud)

(e) Tilt rotors only (Pilot’s front view) (f) Tilt rotors with fuselage (Pilot’s front view)

(g) Tilt rotors only (Pilot’s side view) (h) Tilt rotors with fuselage (Pilot’s side view)

Figure 5.70 Comparison of tilt rotors with and without fuselage at

H = 1.0Rref
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(a) Ground friction velocity for tandem
rotors only

(b) Ground friction velocity for tandem
rotors with fuselage

(c) Quad rotors only (dust cloud) (d) Quad rotors with fuselage (dust cloud)

(e) Quad rotors only (Pilot’s front view) (f) Quad rotors with fuselage (Pilot’s front view)

(g) Quad rotors only (Pilot’s side view) (h) Quad rotors with fuselage (Pilot’s side view)

Figure 5.71 Comparison of quad rotors with and without fuselage at

H = 1.0Rref
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CHAPTER 6. CONCLUSION, REMARKS, AND FUTURE WORK

In the current research, a computational test bed has been developed for studying rotorcraft

brownout. Various turbulence models have been implemented and tested for impinging type

flows, from which the Realizable k− ε model has been selected as more suitable for rotor flows.

Momentum source, based time averaged rotor model, has been integrated to solve for rotor

flow. The dust transport model based on Eulerian frame of reference has been used for solving

the brownout dust transport. The dust entrainment on the ground has been modeled through

empirical relations used in geophysical research.

Based on the simulation completed on rotor and fuselage-rotor configurations it has been

determined that presence of body has a significant effect in brownout conditions. This effect is

particularly pronounced between heights of 1.0 to 3.0 times the rotor radius. The same effect

is also observed in multiple rotor configurations.

In the simulations with different fuselage shapes, it has been found that the cross-sectional

shape of the fuselage does not have much effect on ground signature if the shadow (the projec-

tion on the ground plane) of the body is the same. Although there is not much difference in the

wake, separation zones have been observed near the fuselage nose for square and rectangular

shaped fuselage because of sharp corners.

In the study of multiple rotor configuration, it has been found the tandem rotor has the

most significant ground signature. Although the amount of dust entrainment in tandem is

high, from the pilot’s front view perspective, has the least visual restriction. Both tilt and

quad rotor show lower visual performance because of large dust cloud evolution in front of the

fuselage.
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Future work Although the ability of the present computational model to predict and

calculate the brownout scenario looks promising, further work is needed to model an unsteady

rotor, which can capture the effect of an individual rotor.

All the test cases studied in the current research are completed for hovering rotors at

different heights; whereas in an actual scenario, the height of the rotorcraft decreases with

time. Also, current tactics used by the pilot while landing in an arid desert region is by flying

at very low altitudes parallel to the ground and suddenly land like a fixed wing aircraft. By

achieving this, the pilot prevents the rotorcraft from engulfing itself in the dust cloud and,

thus, extend the visual reference for a longer time. To model this actual scenario, a moving

body method must be developed.
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APPENDIX A. WALL FUNCTIONS

At high Reynolds number, a very steep gradient of velocity exists for the flow near the

wall. Based on non-dimensional distance y+ = u∗ y
ν , the region near the wall can be divided

into three different layers [47].

1. viscous sub-layer (0 < y+ < 5)

2. buffer layer (5 < y+ < 30)

3. inertial sub-layer (30 < y+ < 200)

To accurately capture the velocity gradient, a very refined mesh is required near the wall, which

can capture the viscous sub-layer. This increases computational requirements tremendously for

the high Reynolds number flow, where the viscous sub-layer is very thin. Also the k− ε Model

(and other high Reynolds number turbulence models) do not consider the effect of near-wall in

their modelling. So, these models cannot be integrated into the wall since they give inaccurate

predictions. To overcome this, the first node of the mesh is kept in an inertial sub-layer and

the other required variables are calculated using law of the wall or wall function.

A.1 Standard Wall Function

In the attached turbulent boundary layer, velocity profile in inertial sub-layer is given by

logarithmic profile [12] known as wall of law.

U

u∗
=

1

κ
ln(Ey+) (A.1)
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where κ is van Karman constant equal to 0.41 and E is empirical constant equal to 9.793. If

Up is the velocity at the first node point in the inertial sub-layer, then wall friction can be

calculated as

τw =
ρu∗Up

ln(Ey+)
(A.2)

The wall friction calculated through the wall function approach is implemented in the

existing discretized equation by modifying the wall viscosity, µe, which can be calculated as

τw = µ
∂U

∂y
= µe

Up
yp
⇒ µe

Up
yp

=
ρu∗Up

ln(Ey+)
⇒ µe =

ρu∗ypκ

ln(Ey+
p )

(A.3)

A.2 Launder Spalding Wall Function

One of problems with the standard wall function is the u∗ goes to zero at separating and

re-attachment point, thus causing singularity. Launder and Spalding [20] proposed to use

identity u∗ = C
1/4
µ

√
k in calculating effective wall viscosity.

µe =
ρC

1/4
µ

√
kpypκ

ln(Ey∗p)
(A.4)

where

y∗p =
ypC

1/4
µ

√
kp

ν
(A.5)

In the current research, the wall function is applied for the wall adjacent node with y∗p >

11.225 as used in commercial software, Fluent [23].

A.3 Turbulence

Based on the local equilibrium hypothesis in the wall adjacent cell, production of turbulent

kinetic energy and dissipation are assumed equal. Accordingly, turbulent production in the

wall adjacent cell is calculated as [23]

Pk ≈ τw
∂U

∂y
= τw

τw

κρC
1/4
µ

√
kpyp

(A.6)
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and the turbulent dissipation in wall adjacent node is calculated as

εp =
C

3/4
µ k

3/2
p

κyp
(A.7)

A.4 Wall Function for Rough Wall

Effective viscosity for the rough wall is given by

µe =
ρC

1/4
µ

√
kpypκ

ln(Ey∗p)−∆B
(A.8)

where ∆B is the roughness function which depends upon non-dimensional roughness height

K+
s . K+

s is given by

K+
s =

ρKsu∗
µ

(A.9)

where Ks is the physical roughness height.

The wall is considered smooth when K+
s < 2.25. In this case, ∆B = 0. For a fully rough

regime, when K+
s > 90,

∆B =
1

κ
ln(1 + CksK

+
s ) (A.10)

where Cks is roughness constant which varies from 0.5 to 1.0.
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